ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ НАУЧНОЕ УЧРЕЖДЕНИЕ ФЕДЕРАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР «ВСЕРОССИЙСКИЙ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИЙ И ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ПТИЦЕВОДСТВА» (ФГБНУ ФНЦ «ВНИТИП»)

На правах рукописи

ДЕМИДОВА ЕКАТЕРИНА СЕРГЕЕВНА

ИСПОЛЬЗОВАНИЕ АНТИОКСИДАНТОВ ДЛЯ ПОВЫШЕНИЯ БИОЛОГИЧЕСКОЙ ЦЕННОСТИ КОРМОВ И КАЧЕСТВА МЯСА ЦЫПЛЯТ-БРОЙЛЕРОВ

- 4.2.2. Санитария, гигиена, экология, ветеринарно-санитарная экспертиза и биобезопасность.
- 4.2.4. Частная зоотехния, кормление, технологии приготовления кормов и производства продукции животноводства.

ДИССЕРТАЦИЯ

на соискание ученой степени кандидата биологических наук

Научные руководители:

Кочиш О.И.- доктор ветеринарных наук, ученый секретарь ФГБУ «ВГНКИ»

Андрианова Е.Н. - доктор сельскохозяйственных наук, главный научный сотрудник отдела кормления ФНЦ «ВНИТИП»

Сергиев Посад 2024

СОДЕРЖАНИЕ

введение4
1. ОБЗОР ЛИТЕРАТУРЫ11
1.1. Влияние биологически активных веществ на обменные процессы и
состояние микрофлоры желудочно-кишечного тракта цыплят-бройлеров
11
1.2. Механизмы действия антиоксидантов и их влияние на продуктивностн
птицы, качество кормов и продукции птицеводства
1.3. Липидный обмен сельскохозяйственной птицы
1.4. Заключение по обзору литературы
2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ
3. РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ46
3.1 Возможность использования антиоксидантов на основе куркумы и
дигидрокверцетина для повышения качества и биологической полноценности
кормов и премиксов46
3.2 Эффективность использования куркумы (лат. Curcuma longa) в кормлении
цыплят-бройлеров и ее влияние на:55
3.2.1 Продуктивность;
3.2.2 Переваримость и использование питательных веществ корма
интенсивность обменных процессов в организме птицы;60
3.2.3 Пищевую и биологическую ценность мяса птицы механической
обвалки70
3.3 Использование различных дозировок дигидрокверцетина в кормлении
цыплят-бройлеров для:
3.3.1 Повышения продуктивности и возможности замены кормовых
антибиотиков;79
3.3.2 Улучшения переваримости и использования питательных веществ корма, и
его влияние на состав микрофлоры желудочно-кишечного тракта;83

3.3.3 Снижения перекисного окисления липидов в охлажденном и за	мороженном
мясе птицы механической обвалки	96
3.4 Биологическое и продуктивное действие совместного	применения
антиоксидантов на основе куркумы и дигидрокверцетина в кормле	ении цыплят
бройлеров	106
3.4.1. Продуктивность;	106
3.4.2. Переваримость и использование питательных веще	ств корма,
интенсивность обменных процессов в организме птицы;	110
3.4.3. Гистологическое исследование функционального состояния пе	чени цыплят
бройлеров	114
3.4.4 Пищевая и биологическая ценность мяса птицы механичесь	кой обвалки.
Ветеринарно-санитарный осмотр тушек цыплят бройлеро	ов и их
органолептическая оценка	119
3.4.5 Влияние антиоксидантов на продолжительность срок	а хранения
охлажденного и замороженного мяса цыплят-бройлеров	122
3.5 Результаты производственной проверки	127
3.6 Обсуждение результатов исследования	133
ЗАКЛЮЧЕНИЕ	139
ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ И ПЕРСПЕКТИВЫ ДА.	льнейшей
РАЗРАБОТКИ ТЕМЫ	142
СПИСОК ЛИТЕРАТУРЫ	143
ПРИЛОЖЕНИЯ	162

ВВЕДЕНИЕ

Одна из важнейших тенденций развития современного птицеводства — полная реализация генетического потенциала птицы современных кроссов, обеспечение высокой сохранности поголовья, получение экологически чистой продукции, свободной от остаточных количеств антибиотиков и химических антимикробных средств, обеспечение её биобезопасности для потребителей. В настоящее время кормовые антибиотики полностью запрещены в странах Европейского Союза. Основная опасность кормовых антибиотиков заключается в том, что даже в небольших дозах они, поступая в организм человека, приводят к развитию антибиотикорезистентности патогенных микроорганизмов [63].

Мясо и мясопродукты незаменимы в питании человека. Они являются одним из основных источников белка, аминокислот и витаминов, столь необходимые для человека [50].

Птицеводство является одной из самых быстро развивающейся отраслью в животноводстве. По последним прогнозам, станет основным источником белка в мире, а также в получение функциональных продуктов питания, в том числе диетического и детского питания. Для улучшения качества готовой продукции и снижения расходов на ее получение используют различные кормовые добавки. Функциональные продукты становятся все более важными для птицеводческой отрасли, ведь они помогают решать узкоспециализированные задачи, такие как получение экологически безопасной и свободной от антибиотиков, гормонов, кокцидиостатиков и т.д. мяса птицы для производства детского и диетического питания. Поиск новых кормовых добавок, способствующих функциональной продукции стал актуальной темой в современном мире.

Актуальность темы. В настоящее время проблемам обеспечения биологической полноценности и качества птицеводческой продукции, свободной антибиотиков, отвечающей требованиям ОТ ветеринарно-санитарной безопасности уделяется большое внимание. Как известно, комбикормовая промышленность при изготовлении комбикормов для цыплят-бройлеров и курнесушек, кроме традиционных зерновых, белковых, животных кормов и жиров использует большое количество биологически активных веществ (Фисинин В.И. и др., 2016). Часть из них, а именно витамины и микроэлементы, являются неотъемлемой частью любого комбикорма и вводятся в состав рациона в виде премикса, с учетом гарантийных норм (Фисинин В.И. и др., 2018; Гамко Л.Н., 2011). Другие, такие как: ферменты, сорбенты, эмульгаторы, органические кислоты, гепатопротекторы вводятся в комбикорм в зависимости от структуры рецепта и не являются гарантийными добавками. Важная роль при этом отводится такому классу веществ как антиоксиданты, которые способны улучшить сохранность биологически активных веществ (БАВ) в составе комбикормов, продлить срок хранения не только комбикорма, но и продукции птицеводства: мяса и яиц, за счет снижения свободнорадикального окисления (Фисинин В.И. и др., 2018). Они обеспечивают биологическую безопасность мясной продукции. Так, для увеличения срока хранения охлажденного мяса широко используется витамин Е, который позволяет замедлить перекисное окисление липидов, дополнительное его введение в рационы перед убоем птицы широко используется производителями. Витамин Е эффективен и для стабилизации липидов желтка. Антиокислительные свойства токоферола связаны с блокированием цепной реакции окисления липидов с образованием с радикалами гидроперекисей жирных кислот эфиров (Мазо В.К., 2018).

В связи с переходом к ведению органического сельского хозяйства в рамках Федерального закона «Об органической продукции и о внесении изменений в отдельные законодательные акты РФ», вступившего в силу с 01.01.2020г возникает необходимость в создании отечественных кормовых препаратов, обладающих антиоксидантными и фитобиотическими свойствами,

позволяющими улучшить здоровье птицы и ее продуктивность, повысить качество получаемой от нее продукции. Ассортимент подобных отечественных препаратов узкий и на рынке в основном встречаются импортные препараты. Поскольку мясо птицы широко используется в питании населения, обогащение его естественными антиоксидантами, такими как дигидрокверцетин и куркума может быть использовано для снижения уровня окисленных липидов и повышения биологической ценности продукции, что особенно востребовано в свете получения функциональных продуктов питания для человека.

Исследования в рамках планируемой диссертационной работы направлены на изучение свойств и научную оценку эффективности применения антиоксидантов: куркумы и дигидрокверцетина, в качестве функционального компонента комбикорма для повышения мясной продуктивности птицы, улучшения качества продукции, в том числе и с позиции её биологической безопасности.

Степень разработанности темы исследования. При проведении патентного поиска и изучении информационных источников выявлена тенденция развития включения антиоксидантов в корма птиц, которая заключается в том, что на данный момент наметилось два направления применения антиоксидантов в сельском хозяйстве: стабилизация корма и стабилизация непредельных веществ в организме птицы при скармливании ей антиоксидантов. Если антиоксиданты для стабилизации кормов широко распространены в использовании, то вопрос о применении их для продления сроков хранения охлажденного мяса птицы, повышение продуктивности недостаточно изучен.

Цель исследований: дать научное, практическое и экономическое обоснование применения препаратов на основе куркумы и дигидрокверцетина и возможность их использования в кормопроизводстве в качестве антиоксидантов, для реализации генетического потенциала цыплят-бройлеров, улучшения качества продукции, за счет снижения негативного влияния перекисного окисления липидов мяса и комбикорма.

Задачи исследований:

- 1. Изучить влияние куркумы и дигидрокверцетина на продуктивность бройлеров, интенсивность обменных процессов, переваримость и использование питательных веществ из комбикормов, определить их эффективные уровни ввода, и способность замедлять процессы перекисного окисления липидов в комбикормах, охлажденном и замороженном мясе бройлеров.
- 2. Определить влияние добавок на основе куркумы и дигидрокверцетина на состав микрофлоры слепых отростков кишечника цыплят-бройлеров и использование этих препаратов для замены кормовых антибиотиков.
- 3. Изучить влияние различных уровней ввода куркумы и дигидрокверцетина на функциональное состояние печени, кишечника и мышечной ткани.
- 4. Провести органолептическую и ветеринарно-санитарную оценку мяса цыплят-бройлеров, выращенных при использовании добавок на основе куркумы и дигидрокверцетина.
- 5. Определить экономическую эффективность применения добавок на основе куркумы и дигидрокверцетина.

Научная новизна исследования. Научная новизна диссертационной работы состоит в использовании природных антиоксидантов на основе куркумы и дигидрокверцетина с целью получения экологически чистой продукции без использования кормовых антибиотиков и синтетических антиоксидантов, для улучшения биологической полноценности комбикормов и продукции птицеводства, продления сроков хранения охлажденного и замороженного мяса цыплят-бройлеров, снижения содержания жира в мясе, улучшение липидного обмена и снижение интенсивности перекисного окисления липидов мяса и комбикорма.

Научная новизна работы подтверждена двумя патентами на изобретение RU 2787733 C1 от 12.01.2023 и RU 2789178 C1 от 30.01.2023, а также заявкой на изобретение №2023132981 от 13.12.2023.

Теоретическая и практическая значимость. Комплексная научная разработка направленна на использование композиции природных антиоксидантов на основе компонентов: куркумы и дигидрокверцетина, которые способствуют снижению окисления липидов в комбикормах, улучшению качества мяса цыплят-бройлеров и продлению срока хранения охлажденного мяса, а также снижению использования кормовых антибиотиков.

Производству предложено:

- 1. Для повышения продуктивности и качества мяса бройлеров, замедления процессов перекисного окисления липидов рекомендуем включать в комбикорма 500 г/т куркумы.
- 2. Рекомендуем использовать композицию растительных фитобиотиков с антиоксидантной активностью на основе 500 г/т куркумы с 10 г/т дигидрокверцетина: для замены кормовых антибиотиков, повышения продуктивности цыплят бройлеров и продления срока хранения охлажденного и замороженного мяса.

Методология В исследования. основе И методы методологии выполненных исследований лежат научные положения, изложенные в трудах отечественных зарубежных исследователей И ПО вопросам технологии выращивания, продуктивности, здоровья птицы, а также качества получаемой продукции. Для достижения поставленной цели и решения задач использовали экспериментальные данные, зоотехнические, физиологические, биохимические, гистологические, экономические и статистические методы исследования.

Основные положения, выносимые на защиту:

- 1. Продуктивность бройлеров, получавших комбикорма с различными уровнями включения куркумы и дигидрокверцетина, их влияние на основные зоотехнические, физиолого-биохимические показатели и качество мяса бройлеров и его ветеринарно-санитарная оценка.
- 2. Использование фитобиотиков с антиоксидантной активностью на основе куркумы и дигидрокверцетина в качестве альтернативы кормовым антибиотикам.

- 3. Влияние изучаемых добавок на функциональное состояние организма бройлеров и состав микробиома ЖКТ.
- 4. Применение куркумы и дигидрокверцетина для снижения интенсивности окислительного стресса, замедления процессов перекисного окисления липидов в комбикормах и мясе бройлеров.
- 5. Продление сроков хранения охлажденного и замороженного мяса и мяса птицы механической обвалки цыплят бройлеров, получавших комбикорма, обогащенные добавками на основе куркумы и дигидрокверцетина.
- 6. Определена экономическая эффективность включения в комбикорма для бройлеров добавок на основе куркумы и дигидрокверцетина.

Степень достоверности и апробации результатов. Научные положения, выводы и предложения производству научно обоснованы и базируются на экспериментальных данных, выполненных на достаточном поголовье птицы. Степень достоверности установлена путем статистической обработки данных с использованием критерия Стьюдента. Исследования выполнены в рамках тематического плана ФНЦ «ВНИТИП» № Гос.регистрации 124031400012-0. доложены Материалы диссертации на: заседании ученого совета «ВНИТИП», курсах повышения квалификации специалистов по кормлению (г.Сергиев Посад, 2024 год), «Современные технологии в кормопроизводстве, кормлении высокопродуктивных кроссов птицы, контроль безопасности и качества комбикормов, премиксов, биологически активных добавок», научноконференциях: (г.Санкт-Петербург, практических март год) «Интеллектуальный потенциал молодых ученых как драйвер развития АПК», Международной научной конференции «Актуальные проблемы ветеринарной медицины, товароведения и экспертизы сырья и продуктов животного и и биотехнологии» растительного происхождения, зоотехнии (X научнопрактическая конференция в рамках XII Всероссийского фестиваля науки), Международной научной конференции молодых учёных и специалистов, посвящённой 135-летию со дня рождения А.Н. Костякова (г. Москва, июнь 2022

год), XXI Международной конференции Российского отделения ВНАП (НП «Научный центр по птицеводству») (г. Сергиев Посад, сентябрь 2024).

Работа отмечена «Тимирязевское Гран-При за Ноу-Хау продукта в области кормления сельскохозяйственной птицы» (декабрь, 2022 год, г.Москва), Специальным призом за лучшее изобретение в интеллектуальной собственности агропромышленного комплекса Российской Федерации «ХХVІ Московского международного Салона изобретений и инновационных технологий «Архимед» (март, 2023 год), в конкурсной программе в рамках Международной выставки технологий для профессионалов АПК «Агрос 2024» (январь, г. Москва).

Личный вклад соискателя. В диссертационной работе отражены материалы научных исследований, выполненных лично автором в 2021-2022 гг. в производственных условиях и виварии СГЦ «Загорское ЭПХ» и лаборатории ФНЦ «ВНИТИП». Личное участие автора в получении результатов и анализе полученных данных составляет 91%. Разработана схема выполнения опытов, проведены три зоотехнических и физиологических опыта, проведен патентный поиск и анализ отечественных и зарубежных научных литературных источников, проанализированы и обобщены экспериментальные данные, сделаны выводы и предложения производству, подготовлены научные статьи, рукописи диссертации и автореферата.

Публикации. По материалам диссертационной работы опубликовано 10 научных работ, 4 из которых в изданиях, рекомендованных ВАК РФ, получено 2 патента и подана 1 заявка на изобретение.

Объем и структура диссертации. Диссертация изложена на 183 страницах компьютерного текста. Содержит введение, обзор литературы, материалы и методы, результаты исследования и их обсуждение, заключение, рекомендации производству, приложения. Список использованной литературы включает 155 источников, в том числе 87 — на иностранных языках. Работа иллюстрирована 36 таблицами и 20 рисунками.

1. ОБЗОР ЛИТЕРАТУРЫ

1.1. Влияние биологически активных веществ на обменные процессы и состояние микрофлоры желудочно-кишечного тракта цыплят-бройлеров

Промышленное птицеводство в Российской федерации в настоящее время развивается успешно и обеспечивает население продуктами питания [59]. Отечественный и зарубежный опыт показывает, что полноценное кормление птиц достигается не только кормами растительного и животного происхождения, но и нетрадиционными источниками биологически активных веществ в виде различных добавок [60].

Биологически активные вещества вызывают большой интерес в различных областях применения, поэтому научных работ, направленных на поиск их источников и способы их синтезирования становится все больше. Согласно Abdelkarim Guaadaoui 2014, биологически активное соединение – это просто оказывающее прямое воздействие живой на организм, положительное, так и отрицательное, в зависимости от вещества, дозы и его биодоступности [69]. Помимо эффекта этих соединений, существует еще один критерий, определяющий биологически активные вешества ЭТО их происхождение. Большинство БАВ входят в состав продуктов питания и не влияют на его питательность, обычно они встречаются в небольших количествах и тщательно изучаются, чтобы оценить их влияние на организм [103]. Они содержатся в небольших количествах в растениях, фруктах, овощах, орехах, маслах и цельнозерновых продуктах.

Биологически активные вещества, содержащиеся в растениях, встречаются в виде вторичных метаболитов, и для ежедневного применения необязательны [87], но способны оказывать фармакологическое или токсикологическое воздействие на человека и животных [87]. Таким образом, растения не являются единственным источником биологически активных веществ. Эти вещества могут встречаться и в живых организмах, например, бактериях [114,120,139], грибах [121] и у некоторых групп животных [130, 132].

Следует отметить, что, помимо природных биоактивных веществ, [144] способных синтезировать самые разнообразные биологически активные молекулы, в начале двадцатого века, с развитием фармацевтической химии [146] появились новые инструменты для химического синтеза этих веществ [147], тем самым добавив еще один источник биоактивных молекул. Это стали активно использовать в косметологии, медицине, сельском хозяйстве и т.д.

Биологически активные вещества (БАВ), содержащиеся в источниках питания, куда входит вода, углеводы, белки, липиды и жирные кислоты, клетчатка, витамины, минералы и олигоэлементы, вызывают большие споры среди ученых (Liu P.X. (2013), Nahler G. (2013) и др.) [117, 124], могут ли они считаться таковыми или просто являются незаменимыми питательными веществами. Например, белки, которые все чаще признаются в последние годы в качестве физиологически активных компонентов пищевых продуктов источники биоактивных пептидов [121]. Согласно современным знаниям, коровье молоко, сыр и молочные продукты, являются величайшим биоактивных белков и пептидов, получаемые из пищи [9]. Некоторые пищевые белки вызывают специфические эффекты, выходящие за рамки поставок питательных веществ, таких как IGF (инсулиноподобные пептидные гормоны), лактоферрин, иммуноглобулины и β-лактоглобулин (β-Lg). β-Lg в настоящее время является важным источником биоактивных пептидов, которые после высвобождения играют важную роль для здоровья человека и животного, особенно против гипертонии, функциональных возможностей, связанных с антиоксидантной и противомикробной активность, а также способностью

снижать уровень холестерина в организме [105]. Биоактивные пептиды могут быть зашифрованы в аминокислоте. Эти пептиды обычно состоят из 3-20 аминокислот и высвобождаются из исходного белка после гидролиза или ферментации [127]. Таким образом, можно сделать вывод, что некоторые виды компонентов пищевых продуктов играть непищевую (или ΜΟΓΥΤ сверхпитательную) роль и проявлять биологическую активность в организме, однако считать их биологически активными соединениями неправильно, поскольку одно и то же соединение (или молекула) не может одновременно выполнять две физиологические роли в организме: питательную (энергетический обмен и развития) и прочие: биоактивные (непитательные).

Так можно сделать вывод, что биологически активным соединением является соединения, которые обладают способностью взаимодействовать с одним или несколькими компонентами живой ткани, представляя широкий спектр возможных последствий. Происхождение этих веществ может быть природными (растительным, животным) или синтетическим (частично или полностью) [71].

Именно поэтому в рекомендациях по питанию особое внимание уделяется потреблению биоактивных пищевых молекул (питательных веществ, витаминов, минералов, клетчатки и т. д.), а также непитательных фитохимических веществ (фенольных соединений, флавоноидов, биоактивных пептидов и т. д.).

Биологически активные вещества можно классифицировать как: витамины, белковые кормовые добавки микробиологического синтеза, ферменты, антибиотики, пробиотики, антиоксиданты и транквилизаторы, гормоны [73]. Существуют различные методы использования пробиотиков, органических кислот, химических антиоксидантов, а также антиоксидантов растительного происхождения. Их добавляют в корма, воду, премиксы и т.д. для улучшения санитарного качества, стабилизации витаминов, снижения перекисного окисления липидов, улучшения здоровья птицы и многого другого. Для каждого вида БАВ существуют свои нормы ввода в рацион [77, 62]. Нормирование проводят по 14 витаминам и 7 микроэлементам. Их вводят в комбикорм через премикс, а для

лучшей их сохранности также добавляют антиоксиданты, способствующие лучшей сохранности биологически активных веществ в комбикормах.

Известно, что специи и лекарственные травы, обладают разнообразными антиоксидантными эффектами и другой биологической активностью. Фенольные соединения в этих растительных материалах тесно связаны с их антиоксидантной активностью, которая обусловлена главным образом ИΧ окислительновосстановительными свойствами И способностью блокировать выработку активных форм кислорода. Совсем недавно была также продемонстрирована их способность влиять на пути передачи сигнала с участием различных факторов транскрипции, протеинкиназ, фосфатаз и других метаболических ферментов.

В исследованиях Susana Chamorro и соавт. 2019, было определено влияние пищевых добавок с экстрактом винограда в дозах 2,5 и 5,0 г/кг корма на утилизацию полифенолов в кишечнике и здоровье кишечника цыплят-бройлеров. Усвояемость виноградных полифенолов в подвздошной кишке была выше для мономеров флаван-3-ола. Концентрация бензойной, фенилуксусной, фенилпропионовой кислот и фенольных метаболитов фенил-у-валеролактона была выше у птиц, получавших добавку, что в значительной степени подтверждает микробный метаболизм полифенолов винограда. Морфология кишечника и общее содержание муцина подвздошной кишки не были изменены в результате включения в рацион данной добавки. Количество Escherichia coli и молочнокислых бактерий в подвздошной кишке было снижено у птиц, получавших пищевую добавку с экстрактом винограда. В целом, эти результаты доказывают влияние добавки на микрофлору желудочно-кишечного тракта у цыплят-бройлеров [144].

Анализ литературных источников показал, что поиску альтернативы кормовым антибиотикам посвящено большое количество исследований. С этой целью в опытах на бройлерах [82] изучена возможность использования различных эфирных масел: душицы (Origanum vulgare L.), шалфея (Salvia officinalis L.), розмарина (Rosmarinus officinalis L.) и перца (Capsicum frutescens L.). Получен положительный результат и установлено, что кроме улучшения живой массы

бройлеров, при анализе электрофоретического фракционирования белков сыворотки и оценки перекисного окисления липидов в плазме с помощью теста на активные формы тиобарбитуровой кислоты (TBARS), что уровни общего количества глобулинов (T150), фракции бетаглобулинов (Tatb и T150) и уровня TBARS в плазме в группах, получавших эфирные масла (P<0,05), снижались по сравнению с контрольной группой. Кроме этого замечено снижение перекисного окисления липидов и, следовательно, меньшее окислительное повреждение, вызванное использованием экстрактов растений у цыплят-бройлеров [82].

Исследования Радославова В. и соавторов показали, что введение дигидрокверцетина в рацион молочных коров в послеродовом периоде предотвращал кетоз, улучшал функциональные возможности печени, репродуктивную способность и безопасность стада. При использовании в рационах свиней на выращивании и откорме в экстремальных условиях (условия высокой температуры и смога) использование дигидрокверцетина предотвращало липидное окисление и повышало жизнеспособность организма, что положительно отразилось на ежедневных приростах и безопасности [137].

1.2. Механизмы действия антиоксидантов и их влияние на продуктивность птицы, качество кормов и продукции птицеводства

Антиоксиданты - соединения, защищающие клетки от вредных эффектов перекисного окисления липидов в организме. Они могут быть природные или синтетические.

По природе происхождения антиоксиданты бывают:

1. Ферментативные антиоксиданты - они составляют внутриклеточные системы. Переводят в биологических реакциях активные формы кислорода в перекись водорода и менее агрессивные радикалы, преобразуют их в воду и обычный полезный кислород.

2. Антиоксидантные витамины (водорастворимые: витамин С, рутин, аскорутин; жирорастворимые - А, Е, К) инактивируют агрессивные радикалы, забирают избыток энергии, тормозят процесс цепной реакции образования новых радикалов.

Доказано, антиоксидантные препараты эффективно что ΜΟΓΥΤ предотвращать окислительные процессы в организме птицы и в кормах. Положительное влияние стабилизированных антиоксидантами кормов продуктивность и физиологическое состояние цыплят-бройлеров может быть обусловлено не только лучшей сохранностью питательных веществ (протеины и жиры) и БАВ (витамины и аминокислоты) в кормах и поступлением их в большем количестве в организм, но и влиянием самих антиоксидантов на состояние птицы и переваривание этих веществ в процессах пищеварения и метаболизма.

Всё это позволяет считать антиоксиданты новым поколением эффективных регуляторов процессов жизнедеятельности и средств защиты здоровья животных.

В последнее время в пищевой промышленности в качестве антиоксиданта стали применять природный биофлавоноид – кверцетин, который для пищевых и медицинских целей производят из отходов переработки винограда. С появлением технологии получения более дешевого продукта -дигидрокверцетина, который в России получают на Дальнем Востоке из древесины лиственницы Даурской (ТУ 9364-010-70692152-2010) появилась возможность применять этот природный флавоноид и в кормопроизводстве. Установлено, что кроме антиоксидантной активности дигидрокверцетин обладает капилляро-протекторными, противовоспалительными, радиозащитными, антисептическими, гепато-протекторными свойствами (Плотников М.Б., 2005, Saeed M, Naveed M et al,2017) повышает иммунитет, стимулирует биосинтез лимфоцитов, макрофагов и антител lgY, повышая активность природных киллерных клеток и массу иммунных органов (селезенки, тимуса и фабрициевой сумки) (Williamson G, Manach C et al., 2005) его включение в рационы птицы может приводить к усилению иммунной системы и

снижению частоты заражений и заболеваний, что позволяет позиционировать его в качестве адаптогенной добавки (Comalada et al.,2006).

Кроме того, имеются данные о том, что дигидрокверцетин и кверцетин могут связывать тяжелые металлы (Мо, Al, Pd. Co, Ni), поэтому его хелатирующие свойства могут приводить к снижению токсичности этих металлов (Garg, Shukla, Choudhury, 2019), что является важным для получения безопасной для человека пищевой продукции.

В пищевой промышленности дигидрокверцетин используют как антиоксидант, позволяющий увеличить срок годности продукта, и в качестве пищевой добавки для придания пищевому продукту терапевтических свойств. Дигидрокверцетин предотвращает процесс самоокисления продуктов питания, что способствует увеличению продолжительности срока их хранения в 1,5 — 4 раза. Присутствие даже небольших количеств дигидрокверцетина в составе парафармацевтических продуктов питания способствует защите организма от вредного воздействия свободных радикалов.

Применение дигидрокверцетина в пищевой промышленности регламентируется следующими нормативными документами: Постановление Главного Государственного Санитарного врача от 14.11.2001г. № 36 «О введении в действие санитарных правил (СанПин 2.3.2.1078-01)»; Методические рекомендации Государственного санитарно-эпидемиологического нормирования Российской Федерации № 2.3.1.1915-04 от 2004 г. «Рекомендуемые уровни потребления пищевых и биологически активных веществ».

С точки зрения получения функциональной продукции заслуживает внимания и куркума (Curcuma longa Linn), которая произрастает на юге и на востоке Индии, в Индонезии, культивируется в ряде азиатских стран. Как дикорастущее растение встречается только на индийской территории, поэтому родиной куркумы считают именно эту страну. Длинную куркуму – тукмерик или желтый корень применяют для изготовления специй, ароматная разновидность используется в кондитерском деле. Ею подкрашивают пищевые продукты для улучшения внешнего вида. Цвет, аромат и лечебные свойства куркумы

обеспечиваются ее химическим составом. Куркумин (активный компонент куркумы)— мощный природный антиоксидант, который превышает по силе витамины С, Е и бета-каротины, влияет на липидный профиль и предотвращает перекисное окисление липидов (Kali A et al.,2016). Особый аромат куркуме придает эфирное масло и терпеновые соединения (цингеберен). Установлено, что куркума обладает антисептическими, антиоксидантными, гепатопротекторными, иммуномодулирующими свойствами, благоприятно влияет на нормальную микрофлору желудочно-кишечного тракта и является природным антибиотиком, стимулирует аппетит и обладает тонизирующим действием, разжижает кровь.

Первоначально термин антиоксидант конкретно упоминался как химическое вещество, которое помешало потреблению кислорода. В конце 19 и начале 20 веков, обширное исследование сосредоточено на использовании важнейших промышленных антиоксидантов В процессах, таких как предотвращение металла от коррозии, вулканизации резины, и полимеризации топлива от загрязнения двигателем внутреннего сгорания.

Первые исследования о роли антиоксидантов в биологии были направлены на их использование в предотвращении окисления ненасыщенных жиров, которые являются причиной прогорклости. Были открыты витамины A, C и E как антиоксиданты, которые привели к осознанию важности антиоксидантов в биохимии живых организмов.

Возможные механизмы действия антиоксидантов впервые были изучены, когда было признано, что вещества с антиоксидантной активностью, скорее всего, те, которые сами легко окисляются.

Идея применять антиоксиданты в лечении некоторых болезней пришла к отечественным биохимикам, искавшим средство, помогающее справиться с последствиями лучевой болезни. При этом выяснилось, что антиоксиданты играют важную роль в нормальной жизнедеятельности здоровой клетки, являясь универсальными регуляторами состава, структуры и активности мембран клеток. Природные и синтетические антиоксиданты начали применять в онкологии, кардиологии, неврологии.

Литературные данные Российских и зарубежных исследователей свидетельствуют о том, что жиры, содержащиеся в комбикормах, при хранении легко подвергаются окислению с накоплением перекисных соединений, которые разрушают жирорастворимые витамины, что нередко вызывает токсикозы, параличи и авитаминозы животных. Антиоксидантные добавки в этом случае оказывают профилактический и лечебный эффект.

В связи с переходом к ведению органического сельского хозяйства в рамках Федерального закона " Об органической продукции и о внесении изменений в отдельные законодательные акты РФ", вступившего в силу с 1.01.2020 г возникает необходимость в создании отечественных кормовых препаратов, которые обладают свойствами фитобиотиков.

Доказано, антиоксидантные препараты ΜΟΓΥΤ эффективно что предотвращать окислительные процессы в организме птицы и в кормах. стабилизированных Положительное влияние антиоксидантами кормов продуктивность и физиологическое состояние цыплят-бройлеров может быть обусловлено не только лучшей сохранностью питательных веществ (протеины и жиры) и БАВ (витамины и аминокислоты) в кормах и поступлением их в большем количестве в организм, но и влиянием самих антиоксидантов на состояние птицы и переваривание этих веществ в процессах пищеварения и метаболизма [72, 75, 98].

Антиоксиданты, использовавшиеся первоначально для стабилизации витаминов в кормах, нашли новое применение — в качестве стимуляторов повышения продуктивности животных. Широко стали изучаться природные антиоксиданты, играющие роль в предупреждении эндогенного окисления витаминов.

Существует множество растений с антиоксидантными свойствами, они бывают кулинарные, такие как розмарин, тимьян и орегано, лекарственные, такие как одуванчик и календула и прочее. Антиоксидантные свойства растений в основном обусловлены присутствием полифенольных соединений (флаваноиды, дубильные вещества, подвергающиеся гидролизу проантиоксиданты, фенольные

кислоты и фенольные терпены), каратиноиды и витамины Е, С и А. Полифенолы оказывают особенно сильное антиоксидантное воздействие, они защищают мембранные липиды, предотвращая их окисление и отвечают за поддержание правильного уровня глутатиона в клетках. Флаваноиды и их производные содержатся в значительных количествах в цитрусовых фруктах и винограде. Для оценки и сравнения свойств растений можно определить концентрацию отдельных антиоксидантов, НО гораздо полезнее оценить общую антиоксидантную способность. Это связано с тем, что различные антиоксиданты взаимодействуют между собой, что может обеспечить лучшую защиту. Одним из примеров является глутатион, который восстанавливает витамин С, или аскорбат, участвующий в регенерации токоферолов.

Одним преимуществ растений ИЗ многих является TO, что их индивидуальные активные вещества можно экстрагировать, что позволяет снизить дозировку добавки, особенно там, где запах и вкус в некоторых случаях (например, чеснок) могут быть непереносимы животными. Из-за разнообразия воздействия активных веществ, растительных экстрактов на животных многочисленны и не ограничеваются подавлением окислительной защиты. Исследования подтвердили эффективность растительных препаратов улучшении здоровья животных, показателей роста и качества продукции. Растительные экстракты ΜΟΓΥΤ оказывать благотворное влияние пищеварительный тракт, стимулируя метаболизм и пищеварение, а также проявляя антидиарейные, противовоспалительные, антипаразитарные эффекты. Более того некоторые из них обладают иммуностимулирующими свойствами, усиливая реакцию животных на заболевание.

Фактически качество мяса включает в себя четыре основные категории: технологические, пищевые, гигиенические и органолептические показатели, а антиоксиданты влияют на три из них. Estevez и Petracci оценили влияние добавок Mg~(0,3%) на производственные параметры, окислительно-восстановительный статус и качество мяса у растущих бройлеров [91]. Авторы показали, что диетические добавки Mg~ повышают концентрацию Mg~ 2+ в крови и печени, в то

время как на концентрацию Mg 2+ в мышцах это не влияет. Очень важный вывод этой статьи связан с улучшением влагоудерживающей способности (WHC) мяса благодаря диетическим добавкам Mg. Действительно, WHC играет очень важную роль не только в улучшении внешнего вида мяса, но и в сохранении сочности мяса и предотвращении микробной порчи. Было показано, что добавление магния в пищу было связано с улучшением защиты AO (активность каталазы) в печени, мышцах и крови и снижением маркеров окисления белков (карбонилов белков) в печени и плазме [91].

(Ни и соавторы) рассмотрели потенциальные механизмы, лежащие в основе защитного действия полифенолов на домашнюю птицу в условиях теплового стресса [104]. Авторы охарактеризовали защитные эффекты трех полифенолов; а именно, ресвератрол, куркумин (желтый полифенол, извлеченный из имбиря) и галлат эпигаллокатехина (EGCG), основной компонент экстракта зеленого чая. В целом, за последние 30 лет опубликовано большое количество научных работ, в которых показаны антиоксидантные свойства полифенольных соединений. Однако, есть несколько важных вопросов, связанных с ассимиляцией полифенолов из растительных материалов птицей, сельскохозяйственными животными и людьми, которые убедительно свидетельствуют о том, что полифенолы не являются прямыми антиоксидантами в биологических системах, а скорее косвенно влияют на механизмы антиоксидантной защиты [133]. Прежде всего, абсорбция и усвоение полифенольных соединений из пищи чрезвычайно низки, и поэтому их концентрация в тканях-мишенях слишком мала, чтобы проявлять эффективную прямую активность по удалению свободных радикалов. Это означает, что антиоксидантные свойства многих полифенольных соединений, проявляемые в модельных системах in vitro, связаны с концентрациями, недостижимыми в биологических тканях. Кроме того, быстрый полифенольный метаболизм предполагает, что активные соединения, проявляющие биологические эффекты на тканевом/клеточном уровне, могут отличаться от тех, которые потребляются с пищей. Кроме того, в зависимости от условий полифенолы могут проявлять антиоксидантные или умеренные прооксидантные свойства. Поэтому

было высказано предположение, что, с одной стороны, полифенолы могут оказывать существенное защитное действие в кишечнике, где их концентрация может быть достаточно высокой. С другой стороны, полифенолы могут воздействовать на различные факторы транскрипции, включая Nrf2 и NF-кВ, и тем самым косвенно активировать антиоксидантную защиту. Таким образом, (Ни и соавт.) [104] уделили особое внимание защитному действию полифенолов в кишечнике кур. Действительно, улучшение системы антиоксидантной защиты, возможно, за счет активации факторов транскрипции, в том числе Nrf2 и NF-кВ, является ключевым механизмом защитного действия полифенолов у птиц, подвергшихся тепловому стрессу.

Имеют место сведения о различных препаратах из молозива, которые широко применяют в животноводстве. Использование молозива в птицеводстве для получения высокоэффективных биологически активных добавок с целью повышения роста и адаптационного потенциала цыплят является перспективным. Однако, биологически активные добавки из молозивного сырья и молока требует к себе определенного внимания, так как при хранении влияние на их качество оказывает посторонняя микрофлора. С целью предотвращения порчи и увеличения срока годности молозивных препаратов, рекомендуют использовать антиоксиданты.

Доказано что, попадая с препаратами в организм, антиоксиданты активно на него воздействуют. Сегодня известно множество антиоксидантов различной активности и происхождения - полифенолы, фенольные кислоты, антоцианы и флавоноиды, конкретно дигидрокверцетин. Активные метаболиты кислорода, играют важную роль в поддержании гомеостаза организма [29].

В благоприятных условиях окислительные и антиокислительные процессы в организме сбалансированы. К сожалению, живые организмы часто подвергается стрессовым воздействиям окружающей среды. При таком воздействии усиливаются процессы, приводящие к накоплению свободных радикалов, что со временем приводит к истощению механизмов антиоксидантной защиты - избыточные окислители начинают оказывать повреждающее действие на ткани

организма. Наиболее эффективным способом защиты клеток от повреждающего действия окислителей является введение извне антиоксидантов.

Путём проведения клинических испытаний, проводимых в Академии Сеченова и Институте Микрохирургии глаза, выявлена высокая биологическая активность дигидрокверцетина - природное вещество, получаемое по особой технологии из стружки древесины лиственниц Сибирской (Larix sibirica Ledeb.) и Даурской (Larix Dahurica T) [28]. Этот способ позволяет получать продукт с чистотой 90-96%. Древесина лиственницы содержит до 4,5% флавоноидов, которые представлены однотипными по химическому строению соединениями с преобладающим (более 80%) содержанием дигидрокверцетина [54]. Есть данные, согласно которым, дигидрокверцетин оказывает стимулирующее влияние на состояние антиоксидантной системы бройлеров. Прежде всего, это выражается в повышении активности супероксиддисмутазы – антиоксидантного фермента крови, который играет важнейшую роль антиоксидантной защите практически всех клеток, так или иначе находящихся в контакте с кислородом [118].

Таким образом, использование дигидрокверцетина в составе молозивных БАД для птицы позволяет достигнуть две цели: повысить устойчивость молозивного колоствора к окислительной порче и рассматривать его как добавку с повышенной биологической ценностью, усиливающей адаптационные свойства организма птицы.

Всё это позволяет считать антиоксиданты новым поколением эффективных регуляторов процессов жизнедеятельности и средств защиты здоровья животных.

Подводя краткий итог изложенному выше, можно отметить, что при изучении информационных источников выявлена тенденция развития включения антиоксидантов в корма птиц, которая заключается в том, что на данный момент наметилось два направления применения антиоксидантов в сельском хозяйстве: стабилизация корма и стабилизация непредельных веществ в организме птицы при скармливании ей кормов, обогащенных антиоксидантами. Если

антиоксиданты для стабилизации кормов широко распространены в использовании, то вопрос о применении их для продления сроков хранения охлажденного мяса птицы, улучшения качества жизни цыплят-бройлеров (сохранность поголовья, увеличение живой массы) и снижение затрат корма недостаточно изучен [100].

Еще одной из важных особенностей антиоксидантов, является способность их снижать последствия теплового и, как следствие оксидативного, стресса в организме птицы.

Стресс – это ответ организма на чрезвычайный раздражитель. Первыми в организме птицы воспринимают стресс нервные окончания многочисленных рецепторов различных органов чувств (зрения, обоняния, осязания, слуха, кожной чувствительности и др.) Нервный импульс от этих рецепторов передаётся в мозг (гипоталамус) – обладающий функцией анализатора нервного ответа на соответствующий раздражитель. В ответ на поступающий сигнал гипоталамус выделяет особое гормональное вещество – кортикотропный рилизинг фактор (КРФ), который с кровью попадает в гипофиз. В гипофизе на реакцию поступления КРФ вырабатывается адренокортикотропный гормон (АКТГ), который с кровью попадает в надпочечники. Ответом на повышение концентрации АКТГ в крови, пришедший к надпочечникам, является команда на продукцию соответствующих гормонов. Kopa надпочечников продуцировать кортикостероиды, а мозговой слой – катехоламины – дофамин, адреналин и норадреналин.

Катехоламины активируют работу сердца, вызывают быстрое перераспределение крови в органах и тканях (усиливают снабжение кровью головного мозга, легких, сердца, печени, скелетной мускулатуры). Они обеспечивают освобождение энергии из жировых депо и расщепление гликогена в печени. При длительном воздействии стресса происходит истощение организма и даже гибель.

Стресс протекает в три фазы: первая фаза – фаза тревоги, при которой в кровь выбрасывается значительное количество катехоламинов и

кортикостероидов. У молодняка появляются кровоизлияния в желудке и кишечнике, снижается мышечный тонус, повышается проницаемость капилляров кровеносных сосудов. Если в эту стадию организм не погиб, то постепенно развивается следующая стадия — резистентность к стрессу. Во вторую стадию — организм цыпленка пытается восстановиться и если стресс перестал действовать, то развитие этой стадии заканчивается. Если стресс продолжается, то развивается третья стадия — истощение, где возникают уже необратимые процессы диссимиляции и гибель птицы [46,76].

Проблема теплового стресса не редко возникает на российских предприятиях в летний период. Провоцируют его возникновение многие факторы, но в первую очередь это географическое положение предприятия, тип и настройка вентиляционной системы помещений, а также условия содержания животных, особенно если плотность посадки высокая.

Для снижения последствий теплового стресса можно выделить несколько решений: увеличение обменной энергии (ОЭ) рациона, увеличение содержания жира в корме и применение кормовых добавок: синтетических аминокислот, бетаина гидрохлорид, селена, цинка, фитобиотиков и хрома, а также поддержание оптимального балансы электролитов.

На клеточном уровне, организм животного при тепловом стрессе подвергается оксидативному стрессу, то есть клетки организма подвергаются воздействию свободных радикалов, которые повреждают мембраны клеток и вызывают их преждевременную гибель. Оксидативный стресс возникает, когда антиоксидантная система организма не способна нейтрализовать свободные радикалы, образующиеся в клетках в процессе их жизнедеятельности. Предпосылками такого состояния является в первую очередь именно тепловой стресс, а также поражения организма микотоксинами, окисленные жиры в рационе, недостаток витаминов и аминокислот, общая несбалансированность рациона.

При оксидативном стрессе основным объектом поражения свободными радикалами считаются липиды [76]. Кислород хоть и необходим для жизни всех

аэробных организмов, однако в виде свободных радикалов он становится токсичным.

Оксидативный стресс развивается вследствие дисбаланса между прооксидантной и антиоксидантной системами. Свободные радикалы приводят к повреждению митохондрий, липидов мембран и других биологических структур в клетках. Это способствует развитию воспалительных реакций, нейродегенеративных изменений, онкопатологических процессов, активации апоптоза [150].

В стрессовых условиях того количества антиоксидантов, что в норме работают в организме, недостаточно. Соответственно мы можем через рацион дополнительно обеспечивать организм животного высокоэффективными антиоксидантами для борьбы с оксидативным стрессом.

Во многих антиоксидантных реакциях организма участвует сильнейший антиоксидант селен. Этот микроэлемент поступает в организм только с кормом и важно отметить, что его содержание в естественных источниках недостаточно для покрытия потребности высокопродуктивных животных. По этой причине в корма добавляют различные дополнительные источники селена, как минерального, так и органического происхождения [151].

Помимо использования традиционных антиоксидантов в рационе, таких как селен или витамин Е, для борьбы с оксидативным стрессом можно использовать и растительные антиоксиданты – полифенолы. Экстракты растений активируют эндогенный синтез главного антиоксиданта организма - глутатиона. Он захватывает свободные радикалы и выводит их из организма, тем самым препятствуя запуску цепочки реакций, приводящих к оксидативному стрессу, снижению продуктивности и снижению сохранности.

При повышении температуры организм животного начинает увеличивать секрецию некоторых гормонов, в первую очередь на реакцию теплового стресса вырабатываются гормоны надпочечников — кортикоиды и адреналин. При повышении этих гормонов в крови начинает развиваться состояние инсулинорезистентности — то есть неспособности клеток и тканей реагировать на

инсулин и соответственно не иметь возможности потреблять необходимый уровень глюкозы для жизнедеятельности и продуктивности.

Как следствие, животное снижают потребление корма, а ткани и органы при этом испытывают дефицит энергии и это приводит к снижению продуктивности и увеличению падежа [22].

Самым действенным способом снизить инсулинорезистентность является применение органических источников хрома, которые идеально подходят для моногастричных и полигастричных животных соответственно. Хром восстанавливает чувствительность клеточных рецепторов к инсулину и позволяет животному повысить потребление корма и дает возможность тканям адекватно потреблять глюкозу и соответственно использовать её для жизнедеятельности и продуктивности.

В мировой практике в качестве одного из самых известных средств для снижения теплового стресса применяется бетаин - природное или химическое соединение, которое за счёт своих свойств позволяет животным лучше справляться со стрессами. Благодаря своей дипольной структуре бетаин удерживает вокруг себя молекулы воды, выполняя роль осморегулятора, и поддерживает водный баланс организма в условиях теплового стресса. Эти свойства бетаина часто используются, например, при производстве различных косметических средств для людей.

Тепловой стресс – очень комплексная проблема, поэтому и снижение последствий этого состояния возможно различными путями. При тепловом стрессе животные меньше потребляют корм, поэтому поступление жизненно необходимых питательных веществ в организм снижается, а запасы витаминов и аминокислот истощаются. Поэтому восполнить дефицит важных микроэлементов для поддержания здоровья животных и продуктивности можно через выпойку, но важно помнить, что чрезмерное потребление воды может привести к обвисанию зоба, а это провоцирует развитие патогенной микрофлоры в зобе, кишечнике и легких, а также приводит к потере веса, а иногда и к гибели птицы. Кроме того, в условиях теплового стресса в грудной мышце развивается синдром PSE (Pale,

Soft, Exudate – бледный, мягкий, водянистый), называемый так же синдромом «мягкой мышечной ткани». Мясо грудной мышцы становится бледным, рыхлым и водянистым вследствие денатурации белка, вызванного высокой температурой [26].

Ещё одним пагубным влиянием теплового стресса является нарушение баланса между возбуждением и торможением. Преобладание возбуждения приводит к увеличению тревожности животных, изменению двигательной активности и реакции пищеварительной системы на стресс. Всё это приводит к усилению каннибализма и опять же к снижению продуктивности животных. У птицы учащается дыхание и сердцебиение, резко возрастает потребление воды [46].

В исследованиях Теіхеіга и соавт. описано влияние добавок витамина С на продуктивность, биометрию сердца, органов пищеварения и лимфоидных органов и выхода тушки при убое цыплят-бройлеров в возрасте, которые естественным образом подвергались тепловому стрессу. Четыреста цыплят-бройлеров Кобб получали рационы с добавлением 0; 100; 200; 300; 400 г/т корма витамина С. В период от 1 до 21 дня дозировки влияли на прирост массы, однако влияния дозировок на потребление корма и конверсию корма птицами не наблюдалось. В возрасте от 1 до 45 дней было подтверждено, что дозировки улучшили конверсию корма до расчетного уровня 206,19 частей на миллион витамина С в рационе. Уровни добавленного витамина С повлияли на выход тушек и голеней. Однако влияния дозировок витамина С на биометрию пищеварительных и лимфоидных не наблюдалось. Добавление в рацион витамина С улучшает зоотехнические показатели и выход тушки у цыплят-бройлеров, подвергшихся тепловому стрессу [146].

Villar-Patiño et al, (2002) обнаружили, что использование в рационе птиц пироксикама, нестероидного противовоспалительного препарата, снижает общую смертность и смертность от антиоксидантного стресса на 3–4%. Кроме того, добавление витамина Е в рацион значительно способствует увеличению веса и показателям конверсии корма (Villar-Patiño et al., 2002) [96].

Puthpongsiripom et al., в 2001 году было показано, что добавление витамина Е уменьшает негативные эффекты оксидативного стресса, а куры, получавшие рацион с высоким содержанием ненасыщенных жиров и дополнительно 50 мг/кг витамина Е, имели более высокую яйценоскость, чем куры, получавшие 27 мг/кг этого витамина [136].

Díaz Pulido и соавторы в своем исследовании определяли возможность добавления экстракта зеленого чая и виноградных косточек в рацион бройлеров в качестве природного антиоксиданта, оценивая при этом экспрессию генов и активность антиоксидантных ферментов в защите от окислительного стресса у птиц. Эта работа проводилась на 240 головах птицы линии Кобб 500. Результаты показали, что включение зеленого чая и виноградных косточек в рацион цыплятбройлеров в дозировке по 0,2%, привели к тому, что экспрессия генов SOD, CAT и GSH-Px увеличивалась (p<0,05) по сравнению с контрольным рационом, а ферментативная активность SOD, CAT и GSH-Px была сходной для все опытных групп на образцах печени. В мышцах не было обнаружено различий активности фермента (р>0,05) в опытных группах по сравнению с контролем. В сыворотке крови цыплят, получавших экстракты зеленого чая и виноградных косточек, наблюдалась повышенная ферментативная активность КАТ (p<0.05)сравнению с контрольным рационом. Однако активность GSH-Px несколько снизилась в рационе с экстрактом виноградных косточек. Эти результаты показывают, что включение растительных экстрактов, таких как зеленый чай и виноградные косточки, в рацион бройлеров улучшает экспрессию генов, связанных с антиоксидантной активностью, а также может модулировать активность ферментов [85, 86].

1.3. Влияние биологически активных веществ на липидный обмен сельскохозяйственной птицы

Липиды — это довольно разнообразная совокупность органических соединений биологического происхождения, образованных преимущественно атомами углерода, водорода и кислорода и обладающих общим свойством растворимости в органических растворителях. Однако из-за неточности этого определения в 2005 г. (Fahy et. al.) было предложено химически определять липиды как гидрофобные молекулы, которые могут полностью или частично возникать в результате конденсации тиоэфирных или изопреновых звеньев [92, 131,151].

Последняя классификация биологических липидов по физико-химическим свойствам и молекулярной структуре. Наиболее важными липидами, участвующими в всасывании и метаболизме человека животных и птицы, являются следующие:

- а) Жирные кислоты: химически представляют собой углеводородные цепи переменной длины с карбоксильной группой на конце, которые могут быть насыщенными или ненасыщенными; с другой стороны, они являются составляющими как триглицеридов, так и сложных липидов или могут находиться в свободной форме. Эти типы липидов являются важным источником энергии для клеток, поскольку могут окисляться с получением АТФ [4, 131, 132].
- б) Триацилглицерины: (оставляют большинство в рационе) они представляют собой соединения, образованные тремя жирными кислотами, связанными с молекулой глицерина, так что в результате гидролиза образуются глицерин и жирные кислоты, причем последние производят большое количество энергии, что эквивалентно 9 Ккал/г [131, 58].
- в) Мембранные липиды или сложные липиды: следует учитывать, что, хотя они и не имеют такого пищевого значения, такие соединения, как глицерофосфолипиды, сфинголипиды и холестерин, определяют физические свойства биомембран, такие как текучесть, транспорт и передача сигналов [131, 125].
- г) Прочие липиды: в этот раздел включены стероидные гормоны, жирорастворимые витамины A, D, E и K и стерины (холестерин, растительные

стерины и фитостерины), выполняющие регуляторную функцию и образующиеся из незаменимых жирных кислот [131]. Как указано выше, отсутствие липидов может вызывать различные изменения, поскольку многие из них выполняют структурные и регуляторные функции [129].

Благодаря бета-окислению жиры могут быть источником непосредственной энергии для клеток, за исключением клеток центральной нервной системы и эритроцитов, или служить резервуаром энергии для покрытия долгосрочных потребностей [129].

Существуют незаменимые жирные кислоты, которые не могут синтезироваться организмом, поэтому их необходимо получать с ежедневным рационом [129].

Фосфолипиды, холестерин и белки определяют физико-химические характеристики мембраны, а именно: клеточное распознавание, передача сообщений, транспорт питательных веществ, метаболитов и различные ферментативные активности [131].


Они защищают органы и тело от травм и помогают регулировать температуру [129], а также помогают в транспортировке жирорастворимых витаминов и их усвоении [129].

К сожалению, липиды легко деградируют под действием тепла, света и влажности при ненадлежащем и продолжительном хранении. Скорость окисления зависит от количества жирных кислот в добавке. Чем больше в жире ненасыщенных жирных кислот и чем выше степень их ненасыщенности, тем окисление липидов происходит быстрее. Кроме того, в составе добавки могут быть свободные жирные кислоты. Они безвредные, но имеют меньшую энергетическую питательность и быстрее деградируют под действием окислителей.

После введения жира в комбикорм, имеющаяся там свободная влага активирует гидролиз жира, и количество свободных жирных кислот будет постепенно возрастать. Ионы металлов, входящие в состав кормов, действуют как катализаторы окисления жира. По своей силе они располагаются так: медь,

железо, марганец. Для характеристики степени гидролиза жира используются показатели кислотного числа — это количество миллиграммов гидроокиси калия, необходимого для нейтрализации свободных жирных кислот, которые находятся в 1 г жира. Поскольку скорость окисления жирных кислот в пять раз выше скорости окисления нейтральных жиров, за ростом показателя кислотного числа последует рост перекисного числа, чего уже стоит опасаться.

Фактически, как показано на рисунке 1, окисление – это цепная реакция, в результате которой образуются свободные радикалы. Процесс этот необратимый. Конечные продукты окисления – перекиси, гидроперекиси, альдегиды и кетоны, оксикислоты – остро токсичны для организма птицы. Токсичность жира определяется как раз уровнем накопления перекисей и выражается показателем перекисного числа, % йода выделившегося из иодида калия под действием перекисей, имеющихся в 1 г жира.

Перекиси являются сильнейшими окислителями жиров и разрушителями жирорастворимых витаминов A, D, E, а также каротиноидов в комбикорме, снижают активность ферментов, участвующих в расщеплении липидов. Сильно нарушают функцию поджелудочной железы, железа гипертрофируется. Испорченные жиры образуют с солями кальция и магния мыла, которые не усваиваются организмом и как следствие возникает расстройство пищеварения, в частности блокируется расщепление белка и углеводов, снижается усвоение витаминов группы B, E, падает доступность лизина, метионина, триптофана, и нехватка кальция в организме.

Попадая В кровь, альдегиды кетоны накапливаются В И иммунокомпетентных, кроветворных органах и печени. В результате падает иммунитет и иммунный ответ на выполненные вакцинации, снижается активность кроветворных органов (костный мозг, селезенка). Появляется дисфункция печени, разрушаются стенки кровеносных сосудов, нарушается функция сердца, образуются кровоизлияния в грудные мышцы [46].

Были проведены исследования для оценки продуктивности, профиля жирных кислот и параметров качества мяса цыплят-бройлеров, которых кормили различными источниками жира. В первом эксперименте птица получала рационы с различными источниками жиров: соевое масло (SO), хлопковое масло (CO), субпродукты птицы (PO) и говяжий жир (BT) на начальном этапе (от 1 до 21 дня). В фазе выращивания (от 22 до 42 дней) одна группа птиц продолжала получать тот же источники жира, который использовалися ранее, а другая группа получала SO в рационе. В начальную и растущую фазу входило 3% и 4,5% масла соответственно. На обеих фазах не было выявлено влияния (P>0,05) источников жира на продуктивность птицы, параметры брюшного жира и костей. Между обработками наблюдалась разница (P<0,05) по жирнокислотному составу мяса бедра. Во втором эксперименте на начальном этапе птицы получали тот же рацион с соевым маслом в качестве источника жира в концентрации 3%. На этапе выращивания птица получала рацион с различными источниками жиров: СО,

рапсовым (PO), подсолнечным маслом (CO), PO и ВТ. Никакого влияния (P>0,05) на продуктивность птицы, показатели брюшного жира и качества мяса и костей не наблюдалось. Между обработками наблюдалась разница в профиле жирных кислот мяса (P<0,05). Полученные результаты свидетельствуют о том, что обогащение рационов различными источниками масла, богатого полиненасыщенными жирными кислотами, способствует изменению липидного состава мяса бедер цыплят-бройлеров [99, 110, 116].

В работе Мигакаті изучено влияние использования льняного масла в кормах бройлеров в качестве заменителя соевого масла в разные периоды на продуктивность и состав тушки бройлеров Кобб 500. По итогам исследования выяснилось, что льняное масло снижало продуктивности бройлеров (P<0,05). Курочки имели более высокий процент грудной мышцы и больше брюшного жира, чем петушки (P<0,05). Птица, которую кормили льняным маслом, имела меньше брюшного жира и более низкое содержание общих липидов и холестерина в мясе, чем птица, которую кормили соевым маслом (P<0,05). Результаты не позволили сделать вывод о влиянии пола и источника масла на текстуру мяса и устойчивость к окислению липидов [123].

В исследованиях Lara Bordin Fernandes и соавт. было оценено влияние добавления 1% льняного масла и 1% кокосового масла в корм цыплят-бройлеров в возрасте от одного до 21 дня на продуктивность и биохимические уровни холестерина и триглицеридов в сыворотке крови. Использовали 75 суточных цыплят-самцов линии Кобб 500. Использование льняного и кокосового масел не влияло на прирост массы и потребление корма, однако повышало конверсию корма в период от одного до семи дней. В период от одного до 14 дней включение потребление на корма. Значимого масел влияло только влияния продуктивность в период от одного до 21 дня жизни не наблюдалось. Уровни сывороточного холестерина и триглицеридов у птиц были снижены при использовании кокосового масла. Сделан вывод о том, что использование льняного или кокосового масла можно использовать для кормления цыплятбройлеров в возрасте от одного до 21 дня, так как оно не влияет на конечную

продуктивность птицы, а включение кокосового масла приносит пользу здоровью птицы за счет снижения уровня холестерина и триглицеридов [116].

1.4. Заключение по обзору литературы

Текущей обзор показал, что альтернатива антибиотикам существует, она обширна и разнообразна, и представлена различными классами соединений такими как флаваноиды, про- и пребиотики, подкислители и т.д. и все они оказывают положительное влияние на различные производственные параметры, улучшая иммунологический профиль и морфологию кишечника птицы. Кроме того, было отмечено положительное влияние приготовленного мяса на органолептические характеристики.

Добавки могут создавать большие различия в гематологическом и биохимическом профиле птицы, повышая питательную ценность продуктов, таких как яйца и мясо для потребителей. Однако данные сильно различаются с точки зрения реакций у домашней птицы, и для стандартизации использования их в рационах требуется более точная информация об источнике, форме и уровне дозы в кормах, чтобы обеспечить более точные результаты. Необходимо провести исследования для долгосрочного применения добавок с точки зрения благополучия птицы и безопасности продукта.

В заключении хотелось бы отметить, что для увеличения продуктивности, сохранности птицы, а также безопасности и качественных показателей мяса, всё чаще используют в кормлении птицы разнообразные кормовые биологически активные добавки, способные стимулировать рост птицы, активировать обменные процессы за счет стабилизации микробиоты кишечника, повышать переваримость питательных веществ кормов.

Недавнее международное законодательство и растущая обеспокоенность отечественных потребителей возможностью остаточных количеств антибиотиков

в мясе и других продуктах животного происхождения наложили ограничения на использование стимулирующих рост антибиотиков и доступность антибиотиков для лечения бактериальных инфекций. Доказано, что фитобиотики могут влиять на состав микробиоты кишечника птицы, увеличивать популяцию полезных бактерий в кишечнике, повышать усвояемость белков и жира в организме цыплят бройлеров.

Анализ научных работ по использованию фитобиотиков в животноводстве и птицеводстве показывает, что природные антиоксиданты являются эффективной заменой стимуляторам роста и кормовым антибиотикам, а также, для снижения негативных последствий теплового стресса и как следствие оксидативного стресса.

Доказано, эффективно что антиоксидантные препараты ΜΟΓΥΤ предотвращать окислительные процессы в организме птицы и в кормах. стабилизированных Положительное влияние антиоксидантами кормов продуктивность и физиологическое состояние цыплят-бройлеров может быть обусловлено не только лучшей сохранностью питательных веществ (протеины и жиры) и БАВ (витамины и аминокислоты) в кормах и поступлением их в большем количестве в организм, но и влиянием самих антиоксидантов на состояние птицы и переваривание этих веществ в процессах пищеварения и метаболизма [75, 145, 134, 133, 141].

В то же время необходимы дальнейшие исследования по изучению влияния природных фитобиотиков, чтобы определить и их негативное влияние на организм птицы и снизить его, а биофлаваноиды использовать с максимальной пользой.

2. МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЙ

Исследования проведены в период 2021-2024 гг в Федеральном научном центре Всероссийского научно-исследовательского и технологического института птицеводства в отделах питания птицы, физиологии и биохимического анализа, виварии СГЦ «Загорское» ФНЦ «ВНИТИП» на цыплятах-бройлерах кросса «Росс – 308». Объектом исследований были природные антиоксиданты: куркума (лат. *Curcuma longa* с содержанием куркумина не менее 6%) - род многолетних травянистых растений из семейства имбирных (*Zingiberaceae*), производитель фирма NOYER и дигидрокверцетин, полученный из лиственницы Даурской, по технологии компании ООО Экоинагротех с содержанием активного вещества не менее 95%. Общая схема исследований приведена на рисунке 2.

Рисунок 2. - Общая схема исследований.

В ходе исследования проведено три научно-хозяйственных и физиологических (балансовых) опыта и производственная проверка для определения экономической эффективности полученных результатов.

Цыплят бройлеров выращивали с суточного до 35 суточного возраста при клеточном содержании в батареях P-15, без разделения по полу по 35 голов в группе. Группы формировали по принципу аналогов по живой массе, цыплят распределяли по группам методом случайной выборки. Технологические параметры: плотность посадки, световой и температурный режимы были одинаковы для всех групп и соответствовали «Методическим рекомендациям по технологическому проектированию птицеводческих предприятий», 2013 г. Ветеринарные мероприятия проведены согласно принятому в хозяйстве плану вакцинации.

Птицу кормили полнорационными рассыпными комбикормами, питательность которых соответствовала рекомендациям ВНИТИП 2021 г., вволю. Раздача кормов осуществлялась вручную. Схемы конкретных опытов приведены в таблицах 2.1, 2.2, 2.3, рецепты экспериментальных комбикормов и премикса – в Приложении A1, A2, A3 и A4.

Физиологические (балансовые опыты) опыты, по изучению переваримости и доступности питательных веществ из кормов с включением антиоксидантов, проводили на петушках (по три головы от группы) в возрасте 30 – 33 суток в соответствии с методическими рекомендациями ФНЦ «ВНИТИП». Длительность предварительного периода составляла 3 суток [61]. В конце балансового опыта, после ночного голодания, отбирали образцы крови для изучения морфологии и клинической биохимии из локтевой вены в пробирки с коагулянтом и без него, для получения сыворотки крови. Характеристики форменных элементов и лейкоцитарную формулу крови бройлеров определяли на автоматическом гематологическом анализаторе DF50Vet (Китай), клинической биохимии – на полуавтоматическом биохимическом анализаторе BS-3000P (Китай).

В первом опыте изучали влияние различных уровней включения куркумы (*Curcuma longa*) на продуктивность бройлеров и целесообразность ее применения

в качестве антиоксиданта для снижения негативного влияния перекисного окисления липидов комбикормов и мяса бройлеров. Схема первого опыта представлена в таблице 2.1.

Таблица 2.1- Схема первого опыта на бройлерах

Группа	Поголовье,	Характеристика кормления
Группа	гол	Zupuktephetiku kopiwiciini
1 ()	25	Основной рацион (ОР), сбалансированный по всем
1 (к.)	35	питательным веществам, согласно руководству по кормлению сельскохозяйственной птицы ВНИТИП (2021)
2	35	ОР с включением нативной куркумы в дозе 0,5 кг/т корма
3	35	ОР с включением нативной куркумы в дозе 1кг/т корма
4	35	ОР с включением нативной куркумы в дозе 1,5 кг/т корма
5 (к.)	35	OP с включением 150 г/т корма витамина E^1 с 22- суточного возраста до конца выращивания

Для сравнительного изучения влияния применения различных уровней включения куркумы на качество охлажденного и замороженного мяса бройлеров в комбикорма бройлеров пятой контрольной группы с 22-суточного возраста включали 150 г/т витамина Е.

Во втором опыте изучали влияние различных уровней включения фитобиотика с антиоксидантными свойствами - дигидрокверцетина и лучшей дозировки куркумы (Curcuma longa) (по результатам первого опыта) на продуктивность бройлеров, качество охлажденного и замороженного мяса бройлеров и целесообразность применения этих антиоксидантов в качестве альтернативы кормовым антибиотикам. Схема второго опыта представлена в таблице 2.2.

_

 $^{^1}$ Витамин Е промышленного производства МИКРОВИТ Е ПРОМИКС 50 ADISSEO 500МЕ/г.

Таблица 2.2- Схема второго опыта на бройлера

Группа	Поголовье,	Особенности кормления		
	гол.			
1 (κ.)	35	Основной рацион (OP), сбалансированный по всем питательным веществам, согласно руководству по кормлению сельскохозяйственной птицы ВНИТИП (2021)		
2	35	ОР с добавлением кормового антибиотика «МаксусG» в дозировке 100 г/т корма		
3	35	ОР с включением дигидрокверцетина в дозе 5г/т корма		
4	35	ОР с включением дигидрокверцетина в дозе 10г/т корма		
5	35	ОР с включением дигидрокверцетина в дозе 15г/т корма		
6 (к.)	35	OP с добавлением нативной куркумы в дозировке 500 г/т корма.		

Цель третьего опыта состояла в изучении совместного использования в комбикормах для бройлеров антиооксидантов на основе куркумы (Curcuma longa) и дигидрокверцитина, в том числе в сочетании с витамином Е. Схема опыта приведена в таблице 2.3.

Таблица 2.3 - Схема третьего опыта на бройлерах

Группа	Поголовье,	Особенности кормления		
	ГОЛ			
		Основной рацион (ОР), сбалансированный по всем		
1(к.)	35	питательным веществам, согласно руководству по		
		кормлению сельскохозяйственной птицы ВНИТИП (2021)		
2	35	ОР с добавлением нативной куркумы в дозировке 500 г/т		
2	33	корма.		

Группа	Поголовье,	Особенности кормления				
Труппа	ГОЛ	Особенности корматения				
3	35	ОР с добавлением дигидрокверцетина в дозировке 10 г/т				
		корма.				
4	35	ОР с добавлением комплекса антиоксидантов: Куркума				
+ 33		500 г/т корма + Дигидрокверцетин 10 г/т корма				
		ОР с добавлением нативной куркумы в дозировке 500 г/т				
5	35	корма + витамин Е с 22 дневного возраста цыплят-				
		бройлеров				
		ОР с добавлением дигидрокверцетина в дозировке 10 г/т				
6	35	корма + витамин Е с 22 дневного возраста цыплят-				
		бройлеров				
		ОР с добавлением комплекса антиоксидантов: Куркума				
7	35	500 г/т корма + Дигидрокверцетин 10 г/т корма + витамин				
		Е с 22 дневного возраста цыплят бройлеров.				

При проведении опытов на бройлерах учитывали следующие показатели:

Зоотехнические:

- сохранность поголовья птицы (%) ежедневно, с выявлением причин отхода;
- живую массу в суточном, 7- , 21- и конце выращивания путем индивидуального взвешивания всех подопытных цыплят (ГОСТ 31962-2013), г;
- среднесуточный прирост живой массы бройлеров в среднем по группе расчетным путем по формуле:

$$A = \frac{Wt - Wo}{t_2 - t_1}$$

где: W_t – конечная живая масса; W_0 – начальная живая масса; t_1 и t_2 – возраст в днях на начало и конец опыта;

- расход корма путем ежедневного учета заданного количества комбикорма, г;
 - затраты корма на 1 кг прироста живой массы, кг;

- убойный выход мяса (%) после убоя птицы в конце выращивания;
- Европейский индекс продуктивности определяли расчетным путем по формуле: ЕИП=Среднесуточный прирост, г * Сохранность, % / затраты корма на 1 кг прироста живой массы, кг *10.

Физиолого-биохимические:

- гигроскопическая влага-путем высушивания биологического материала при 100 C до постоянной массы (ГОСТ 13496.3-92);
- содержание общего азота в кормах, помете (методом Кьельдаля на автоматическом анализаторе ГОСТ Р51417-99), %;
- содержание сырого жира в корме, помёте, печени и в грудных мышцах в аппарате Сокслета, методом Рушковского ГОСТ 13496.18-85, %;
 - содержание азота в помёте по Дьякову,%;
- содержание сырой золы в кормах, помете, мышцах (методом сухого озоления образца), % по ГОСТ 25392-82 и ГОСТ 2178.4-76;
- содержание сырой клетчатки в кормах, помете (по Геннебергу и Штоуману ГОСТ 13496.2-91), %;
- содержание аминокислот в кормах, помете и грудных мышцах (методом ионообменной хроматографии на автоматическом анализаторе AAA-T 339), %;
- переваримость сухого вещества корма, сырого протеина, сырой клетчатки, сырого жира, использование азота, использование аминокислот в балансовых опытах, %;
- содержание фосфора (%) в большеберцовой кости (на автоматическом жидкостном анализаторе «Контифло»);
- содержание кальция (%) в большеберцовой кости (методом атомноабсорбционной спектрофотометрии на анализаторе фирмы «Перкин Элмер»);
- кислотное число корма и мяса, м
г КОН/г, ГОСТ 13496.18-85, ГОСТ Р 55480-2013
- перекисное число корма и мяса, % I или мэкв/кг, ГОСТ 31485-2012, ГОСТ Р 54346-2011, а также

- тиобарбитуровое число, мг МА/кг (Опыт 2 и Опыт 3) согласно ГОСТ Р 55810-2013 и ГОСТ 31470-2012
 - влагосвязывающая способность охлажденного мяса бройлеров, %
- содержание витаминов A, E, B₂ (мкг/г) в печени бройлеров (в конце опыта), премиксах (путем изучения динамики снижения активности витаминов A, E и B₂ при хранении премиксов в условиях лаборатории в течение 6 месяцев)

Химический анализ кормов, помета, печени, костяка, мяса цыплятбройлеров был выполнен по общепринятым методикам биохимического анализа (В.И. Фисинин, А.Н.Тишенков, И.А. Егоров и др 2010).

- биохимические показатели крови: содержание общего белка, мочевой кислоты, лейкоцитарная формула определены -в конце опыта от трёх голов петушков от каждой группы на автоматическом гематологическом анализаторе Гемаскрин VET 5 diff
- были проведены гистологические и морфометрические исследования 12-перстной и слепых отделов кишечника Материалом для гистологического исследования являлась печень цыплят-бройлеров в возрасте 35-и дней. Микропрепараты изготавливались по специальной технике, заключающейся в фиксации отобранного материала в 10%-ном забуференном нейтральном формалине и далее проводкой (дегидратацией) проб с использованием процессора замкнутого типа вакуумного инфильтрационного Tissue-Tek VIP 5 Junior (автоматический автономный тканевый процессор), заливкой в парафин, депарафинированием и окрашиванием срезов гематоксилином Джилла и водным раствором эозина. Фотографии микропрепаратов изготавливались при помощи цифровой камеры МС-3 (USB-2.0) № XC1272, камеры LCMOS03100KRA, компьютерной системы МСview.
- микробиом слепых отростков кишечника изучали посредством молекулярно-генетических методов: NGS-секвенирования (опыт 2).

Для оценки мясных качеств проведена анатомическая разделка по 6 голов из каждой группы после убоя в 35 суточном возрасте в соответствии с рекомендациями ВАСХНИЛ. Ветеринарно-санитарную экспертизу мяса

проводили согласно действующих нормативных документов «Правил ветеринарного осмотра убойных животных и ветеринарно-санитарной экспертизы мяса и мясных продуктов» (1983 г. с дополнениями и изменениями 1988 г.) с требований санитарно-эпидемиологических правил учетом И нормативов «Гигиенические требования к безопасности и пищевой ценности пищевых продуктов» (СанПиН 2.3.2.1078-01).

- органолептические: внешний вид, запах, консистенцию, состояние жира, качество бульона при варке мяса); ГОСТ Р 51944-2002 «Мясо птицы. Методы определения органолептических показателей, температуры и массы».
- физико-химические исследования мяса: метод определения продуктов первичного распада белков в бульоне (р-я с сернокислой медью), реакция на пероксидазу, определение рН мяса. (Правила ветеринарного осмотра убойных животных и ветеринарно-санитарной экспертизы мяса и мясных продуктов (утв. Минсельхозом СССР 27.12.1983) (3 опыт)
- метод микроскопического анализа бактериоскопию мазков-отпечатков грудной мышцы птицы [102]. Описание метода приведено в Приложении А5.

Производственная проверка

Экономическую эффективность рассчитывали В соответствии «Методикой экономической эффективности определения ветеринарных мероприятий», утвержденной Департаментом ветеринарии Министерства сельского хозяйства Российской Федерации (1997). Схема производственной проверки представлена в таблице 2.4, состав и питательность рациона приведены в Приложении А.6, а состав премикса – в приложении А.2.

Таблица 2.4. - Схема производственной проверки, n=105

Группа	Поголовье,	Характеристика кормления					
Базовый		Основной рацион (ОР), сбалансированный по всем					
вариант	105	питательным веществам, согласно руководству по кормлению сельскохозяйственной птицы ВНИТИП (2021)					
Новый							
вариант	105	OP с добавлением нативной куркумы в дозировке 500 г/т корма.					
Новый	105	ОР с добавлением композиции антиоксидантов: Куркума					
вариант		500 г/т корма + Дигидрокверцетин 10 г/т корма					
2							

Расчет экономической эффективности проведен по формуле:

 $\Theta = (C_{\rm B} - C_{\rm H})$ х $A_{\rm H}$, где $C_{\rm B}$ и $C_{\rm H}$ — себестоимость 1 кг прироста живой массы бройлеров в базовом и новом вариантах, руб.

Ан — количество произведенной продукции в новом варианте, кг.

В ходе опытов все процедуры с птицей проводились в соответствии с Европейской конвенцией по защите животных, используемых для научных целей (2003) и этических норм «Директива 2010/63/ЕU Европейского парламента и Совета от 22.09.2010 года по охране животных, используемых в научных целях».

Основные экспериментальные данные обработаны методами вариационной статистики с использованием критерия Стьюдента в компьютерной программе «Microsoft Excel». Достоверность сравнительных результатов исследований определяли с помощью критерия Стьюдента по трём уровням: * – P>0,95; II – P>0,99; III – P>0,999. Данные в таблицах приведены в виде М+т, где М – среднее арифметическое, т – ошибка средней арифметической.

3. РЕЗУЛЬТАТЫ СОБСТВЕННЫХ ИССЛЕДОВАНИЙ

3.1. Возможность использования антиоксидантов на основе куркумы и дигидрокверцетина для повышения качества и биологической полноценности кормов и премиксов

Комбикорма обеспечивать необходимыми должны ПТИЦУ всеми питательными и биологически активными веществами и соответствовать нормам для вида, возраста и кросса птицы. Но компоненты комбикормов для птицы могут быть разнообразным в зависимости от различных факторов: региона и климатических условий выращивания птицы, финансового состояния предприятия, биологических особенностей птицы и т.д. Важную роль для обеспечения полноценного кормления цыплят-бройлеров играют поскольку данной птице необходимо высокое содержание обменной энергии. Биологическое значение липидов - депонирование и транспорт энергии, формирование биологических мембран клеток, материал для биосинтеза ряда биологически активных соединений, участвующих в обмене веществ и физиологических процессах, а также защитный материал от неблагоприятных воздействий внешних факторов.

Во всех растительных и животных кормах липиды содержатся в двух основных формах — свободной, накапливаемой в клетках или межклеточном пространстве, и связанной, которая тесно соединена с белками и углеводами. Свободные липиды представлены нейтральными липидами (жирами) — траиглицеролами, и легко экстрагируются из кормов растворителями. Связанные липиды представлены фосфоглицеролами. Для их экстракции используют смесь растворителей.

Липиды являются постоянными компонентами рационов. Большее их количество содержится в продуктах переработки масляничных культур, животных жиров и масле. Зерновые содержат в своем составе от 2,5 до 7% общих липидов. В зеленых кормах содержание сырого жира составляет 0,4-0,6% от натурального или 5 – 8% от сухого вещества. Но липиды, хотя и необходимы организму, являются легкоокисляемыми соединениями. На их разрушение влияют кислород из воздуха, свет, вода, металлы, а также хранение. Окисление липидов ухудшает их органолептические свойства и биологическую ценность.

Для стабилизации кормовых жиров используют химические соединения различной природы — антиоксиданты, которые сдерживают процесс свободнорадикального окисления. В пищевой промышленности и сельском хозяйстве чаще всего используют бутилокситолуол, бутилоксианизол, сантохин, дулидин и др.

Комбикорма для птицы содержат необходимые количества биологически активных веществ для роста и развития птицы, а также полноценной ее продуктивности. Окислительно-восстановительные реакции и продукты распада окисления способны нарушить стабильность БАВ в кормах.

предотвращения перекисного окисления липидов корма, МЫ использовали различные природные антиоксиданты. Так как комбикорма содержат высокие уровни жира, то в них активно идет процесс разрушения жиров распада. накоплением вредных продуктов ИХ Согласно нормативной документации (ГОСТ 51850-2001) срок хранения кормов для цыплят-бройлеров составляет 1 месяц, в который происходят наибольшие изменения, снижающие при этом биологическую ценность и доступность питательных веществ.

Таким образом, в первом опыте, где использовали различные дозировки куркумы (таблица 3.1), установлено, что использование растительных добавок позволяет замедлить перекисное окисление липидов компонентов за счет снижения содержания перекисных соединений и продуктов вторичного окисления липидов.

Для определения возможности куркумы замедлить процесс окисления липидов корма, были отобраны образцы комбикорма второго периода выращивания птицы контрольной группы 1 (основной рацион), группа с наименьшим уровнем ввода куркумы 500г/т корма (группа 2) и группа 3, где уровни ввода куркумы имели максимальное значение – 1500 г/т корма.

Так кислотное число комбикорма второго периода выращивания, на первый месяц хранения, во всех опытных группах было ниже контрольных показателей, и не превышали предельно допустимые уровни, как показано в Таблице 3.1. Органолептическая оценка корма не выявила признаков порчи.

Таблица 3.1 - Изменение перекисного числа, % I и кислотного числа, мг КОН/г комбикорма для цыплят-бройлеров разных периодов выращивания (Опыт 1)

Показатель	Группа				
Hokasarenb	1 (ĸ)	2	3		
Перекисное	число корма, (%	I) II период			
1 месяц хранения	0,058	0,066	0,053		
2 месяца хранения	0,08	0,052	0,038		
3 месяца хранения	0,064	0,054	0,060		
Кислотное чис	ело корма, (мг КС)H/г) II период			
1 месяц хранения	15,24	12,73	14,40		
2 месяца хранения	29,41	30,34	25,32		
3 месяца хранения	39,28	38,93	38,64		

На третий месяц хранения того же комбикорма, в условиях лаборатории, кислотное число во всех опытных группах было также ниже контрольных значений, хотя и превышали допустимые нормы по этому показателю (Рисунок 3). При проведении органолептической оценки комбикорма был выявлен неприятный запах, что свидетельствует о процессе окисления жиров.

Но повышение кислотного числа корма не так опасно для птицы, более перекисного числа, который указывает на важным является показатель количество вредных перекисей, образовавшихся в процессе порчи жиров. А этот показатель на третий месяц хранения комбикорма, в условиях лаборатории, во группах не превышает допустимых значений (0,41)%I, согласно «Методические указания ПО определению качества комбикормов ДЛЯ сельскохозяйственной птицы ПО степени гидролиза» окисления VTB. Минсельхозом России 27.01.2003 №13-5-02/0657) и составлял 0,054 и 0,060 %I против 0,064% І в контрольной группе, как показано на Рисунке 4.

Рисунок 3 – Динамика изменения кислотного числа комбикорма, мг КОН/г в зависимости от сроков хранения (Опыт 1)

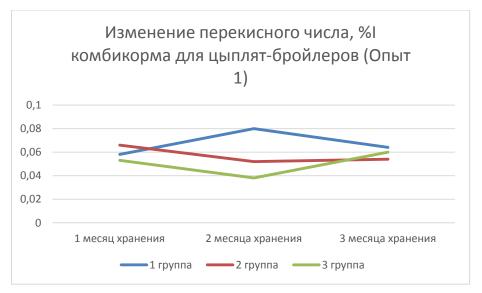


Рисунок 4 - Изменение перекисного числа, % I комбикорма для цыплят-бройлеров на разных сроках хранения (Опыт 1)

Во втором опыте, где использовали различные дозировки дигидрокверцетина на возможность замедлить перекисное окисление липидов в комбикормах для птицы, а также сравнивали его действие с антибиотиком (таблица 3.2), установлено, что использование добавок дигидрокверцетина позволяет замедлить перекисное окисление липидов компонентов за счет снижения содержания перекисных соединений и продуктов вторичного окисления липидов.

Таблица 3.2 - Изменение перекисного числа, % I и кислотного числа, мгКОН/г комбикорма для цыплят-бройлеров при хранении (Опыт 2)

Показатель	Группа						
TTORUSUTESIB	1 (ĸ)	2	3	4	5	6	
Перекисное число корма, (% I) II период							
1 месяц хранения	0,084	0,084	0,084	0,082	0,080	0,077	
2 месяца хранения	0,054	0,080	0,052	0,054	0,063	0,067	
3 месяца хранения	0,138	0,124	0,126	0,079	0,090	0,078	
Кис	Кислотное число корма, (мг КОН/г) II период						
1 месяц хранения	34,56	43,36	37,54	39,39	39,16	22,86	
2 месяца хранения	73,12	86,41	89,64	84,54	97,50	77,42	
3 месяца хранения	76,75	74,54	86,96	84,07	91,21	67,51	

При хранении комбикорма II периода в течении одного месяца, как показано на рисунке 5, кислотное число соответствовало нормативным показателям, лишь в шестой группе, однако перекисное число (рисунок 6) во всех группах не превышало предельных показателей. В опытных группах 2 и 3 этот показатель был на уровне контрольных значений и составлял 0,084 %I, а в четвертой, пятой и шестой опытных группах эти значения были ниже контрольных показателей и составляли 0,082; 0,08 и 0,077 %I.

На третий месяц хранения кислотное число во второй группе было ниже контроля и составляло 74,54 мгКОН/г, а в третьей, четвертой и пятой опытных группах с включением дигидрокверцетина — 86,96; 84,07 и 91,21 мгКОН/г. Что свидетельствует о протекании процесса окисления липидов. Перекисное число в

опытных группах составляло 0,124; 0,126; 0,079; 0,09 и 0,078 %I соответственно против 0,138 %I контрольных показателей и находились на уровне допустимых значений.

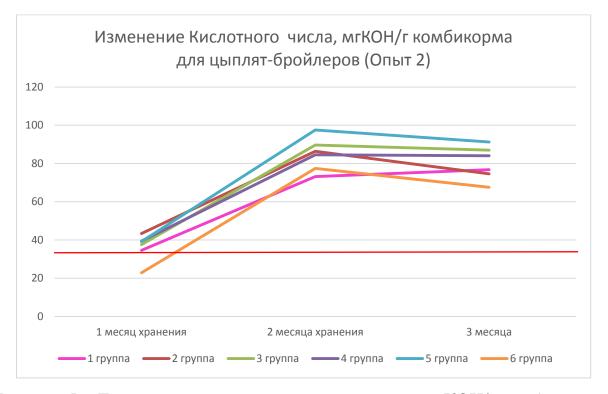


Рисунок 5 — Динамика изменения кислотного числа, мг КОН/г комбикорма в зависимости от срока хранения (Опыт 2)

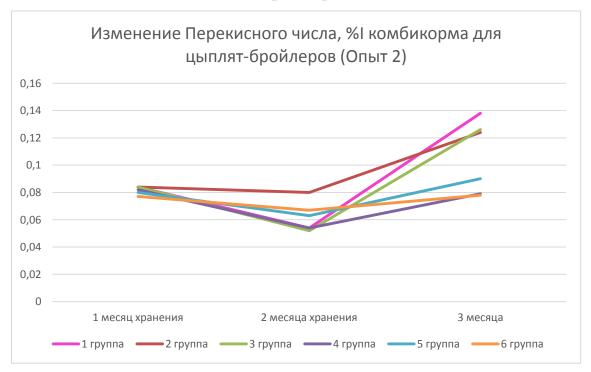


Рисунок 6 - Изменение перекисного числа, %I комбикорма для цыплят-бройлеров на разных сроках хранения (Опыт 2)

В третьем опыте, где для замедления процессов окисления липидов в комбикормах использовали различные сочетания антиоксидантов, установлено (таблица 3.3), что кислотное число комбикорма I периода выращивания цыплят-бройлеров на первый месяц хранения во второй и четвертой опытных группах, было ниже контрольных значений и составляло 25,86; 25,57 мгКОН/г против 28,78 и не превышало допустимые показатели.

Перекисное число комбикорма I периода на первый месяц хранения во всех опытных группах не превышало допустимых значений, а во второй группе этот показатель был ниже контрольных значений и составлял 0,054 %I против 0,062 %I.

На третий месяц хранения комбикорм для цыплят-бройлеров I периода выращивания имел значения кислотного числа, немного превышающие допустимые нормы, однако в четвертой группе эти значения были ниже контрольных показателей и составляли 36,51 мгКОН/г.

Перекисное число в третьей и четвертой опытных группах были ниже контрольных показателей и составляли 0,068 и 0,056 %I соответственно против 0,075 %I. Следует отметить что показатели перекисного числа во всех группах не превышали допустимые нормы.

При изучении динамики изменений кислотного и перекисного числа в комбикормах для цыплят-бройлеров II периода выращивания, где содержания сырого жира уже было больше, на третий месяц хранения было обнаружено, что во второй, четвертой, пятой, шестой и седьмой опытных группах значение кислотного числа было ниже контрольных показателей. Перекисное число во всех опытных группах, кроме пятой хоть и было немного выше контроля, но все равно находилось в пределах допустимых норм.

Таблица 3.3. - Изменение перекисного числа, % I и кислотного числа, мгКОН/г комбикорма для цыплят-бройлеров разных периодов выращивания

Показатель				Группа				
Hokusuresib	1 (ĸ)	2	3	4	5	6	7	
Перекисное число корма, (% I) I период								
1 месяц хранения	0,062	0,054	0,086	0,084				
2 месяца хранения	0,075	0,056	0,066	0,058		2		
3 месяца хранения	0,075	0,094	0,068	0,056				
Ки	слотное	число ко	рма, (мг	КОН/г) І і	период			
1 месяц хранения	28,78	25,86	31,42	25,57				
2 месяца хранения	36,82	36,80	40,67	31,38		2		
3 месяца хранения	39,57	40,80	45,44	36,51				
	Перекис	ное число	о корма, (% I) II пе	риод			
1 месяц хранения	0,128	0,068	0,110	0,114	0,188	0,122	0,135	
2 месяца хранения	0,112	0,102	0,107	0,118	0,272	0,204	0,086	
3 месяца хранения	0,086	0,092	0,088	0,096	0,486	0,361	0,092	
Кислотное число корма, (мг КОН/г) II период								
1 месяц хранения	55,41	69,74	70,40	56,40	57,48	58,04	58,84	
2 месяца хранения	77,58	74,42	90,44	74,13	70,41	64,47	37,42	
3 месяца хранения	81,28	77,78	90,40	77,20	71,86	65,79	76,64	

Таким образом установлено, что использование растительных добавок на основе куркумы и дигидрокверцетина позволяет замедлить процесс перекисного окисления липидов компонентов и снизить содержание перекисей и продуктов вторичного окисления липидов, улучшает биологическую полноценность корма.

² Согласно схеме проведения опыта, цыплята бройлеры пятой группы до 22 дня выращивания потребляли рацион второй группы, цыплята шестой группы — рацион третьей группы, а цыплята седьмой — рацион четвертой группы, то значение показателей кислотного числа, мгКОН/г и перекисного числа, % І в группах пять, шесть и семь будут соответствовать значениям этих показателей второй, третьей и четвертой групп.

Куркума и дигидрокверцетин могут использоваться в качестве антиоксидантов в комбикормах для сельскохозяйственной птицы для стабилизации жиров.

Основными факторами ухудшения стабильности БАВ в премиксах являются окислительно-восстановительные реакции, которые инициируются повышенным содержанием кристаллизационно-связанной воды в сернокислых солях микроэлементов. Для повышения стабильности витаминов в премиксах используется метод сушки сернокислых солей или использование карбонатов или оксидов.

Применение этих добавок для улучшения стабильности витаминов в премиксах, как показано в таблице 3.4, не оказывает существенного влияния на улучшение сохранности витаминов А и В₂. Вместе с тем, изменение активности витамина Е через шесть месяцев было меньше в сравнении с контролем на 16,68% в группе с добавлением 15г/т корма дигидрокверцетина и на 5,84% в группе с добавлением 500 г/т корма куркумы.

Таблица 3.4 - Влияние антиоксидантов на сохранность витаминов в 0,5% премиксе для бройлеров

	Содержание	Срок хранения 0,5% премикса			
Показатель	витамина,	Начало	1 месяц	3 месяца	6 месяцев
	мкг/кг	хранения	1 месяц	Э МССЯЦа	о месяцев
Премикс	A:	840	342	272	341
(контроль)	E:	7638	7330	7238	6439
	B ₂ :	827	771	800	746
Премикс +	A:	840	293	268	289
ДГВ10г/т	E:	7638	6781	6817	6290
корма	B ₂ :	827	658	645	689
Премикс +	A:	840	411	330	296
ДГВ15г/т	E:	7638	6809	7229	7513
корма	B ₂ :	827	700	681	584

Премикс +	A:	840	308	287	285
куркумы	E:	7638	6786	7221	6815
0,5кг/т корма	B ₂ :	827	805	814	736
Премикс+	A:	840	311	273	291
куркумы	E:	7638	6808	6011	6299
1,5кг/т корма	B ₂ :	827	736	749	734

3.2. Эффективность применения куркумы (лат. Curcuma longa) в кормлении цыплят-бройлеров и ее влияние на продуктивность, обменные процессы, пищевую и биологическую ценность мяса (Опыт 1)

Проведенный нами анализ качества комбикормов показал, что добавки на основе куркумы и дигидрокверцетина позволяют улучшить биологическую полноценность комбикорма за счет замедления процессов перекисного окисления липидов, а сами эти добавки могут использоваться в комбикормах в качестве антиоксидантов. В этой связи цель первого опыта состояла в изучении возможности применения различных дозировок куркумы для повышения продуктивности бройлеров и улучшения качества мяса.

Как известно куркума (лат. *Curcuma longa*) является лекарственным растением, широко используется и культивируется в тропических регионах. Активным соединением куркумы является фенольное соединение - куркумин, который обладает антиоксидантными, противовоспалительными и иммуномоделирующими свойствами [19].

Калорийность куркумы (лат. *Curcuma longa*) составляет 325 ккал на 100 грамм продукта, а химический состав включает в себя: бета-каротин, витамины: В₁, В₂, В₅, В₆, В₉, В₁₂, С, Н и РР.

Анализ химического состава куркумы, проведенный в испытательном центре ФНЦ «ВНИТИП» показал (таблицы 3.5), что куркума содержит не менее

9,55% протеина, 6,25% жира (в расчете на воздушно-сухое вещество), имеет богатый аминокислотный состав.

Минеральный состав куркумы характеризуется высоким содержанием калия, фосфора, магния, кальция, железа и значительно меньшим цинка, меди, селена.

Так наличие 2080,0 мг калия в расчете на 100 г куркумы свидетельствуют о возможности использовать её для коррекции баланса электролитов в рационах сельскохозяйственной птицы, для обеспечения нормативного содержания в рационах хлора, а также использовать эту добавку для снижения негативных последствий теплового стресса. Значимые уровни содержания меди 1,3 мг на 100 г продукта — свидетельствуют о способности куркумы ингибировать рост плесеней и патогенной микрофлоры.

Таблица 3.5 – Химический и аминокислотный состав (%) куркумы (лат. *Curcuma longa*), Содержание витаминов и каротиноидов (мкг/г), в расчете на воздушно - сухое вещество.

Показатель	Значе ние	Показатель	Значе
Влага	9,12	Пролин	0,26
Сырой протеин	9,55	Лейцин	0,85
Сырой жир	6,29	Фенилаланин	0,56
Сырая зола	4,46	Аланин	0,33
Витамины		Валин	0,62
Витамин А	-	Изолейцин	0,47
Витамин Е	39,39	Аргинин	0,53
Каротиноиды	16,22	Тирозин	0,33
Аминокислоть	J	Лизин	0,36
Треонин	0,47	Гистидин	0,21
Серин	0,45	Микроэлементь	Л, МГ

Глутаминовая	1,21	Магний	208,0
Цистин	0,15	К	2080,0
Аспарагиновая к-та	1,66	Cu	1,3
Глицин	0,47	Ca	168,0
Метионин	0,18	P	299,0

3.2.1. Продуктивность

Как показали результаты исследования (Опыт 1, Таблица 3.6) включение в комбикорма для бройлеров 0,5 кг/т корма куркумы способствовало повышению живой массы бройлеров второй опытной группы во все возрастные периоды их выращивания.

Установлено, что в 7-суточном и 21-суточном возрасте живая масса цыплят второй опытной группы, получавших комбикорма с включением препарата на основе куркумы (*Curcuma longa*) в дозе 0,5 кг/т корма, была выше контроля на 2,9 и 1,8% соответственно, а к концу выращивания превышала контроль на 1,21% при снижении затрат корма на 1 кг прироста живой массы на 0,54% в сравнении с контролем. Живая масса петушков была выше контроля на 1,5%, а курочек – на 0,92%, разность с контролем статически не достоверна.

Таблица 3.6 – Продуктивность цыплят-бройлеров кросса «Росс-308», получавших комбикорма с включением куркумы, (n=35) М+m (Опыт 1).

Показатель			Группа		
Hokusuremb	1 (ĸ)	2	3	4	5 (K)
Сохранность	100	100	100	97,14	100
поголовья, %	100	100	100	77,14	100

Живая масса, г в					
возрасте, суток:					
суточные	39,0±0,34	39,0±0,58	39,0±0,44	39,0±0,32	39,0±0,31
7	128,57	132,31	131,48	133,39	131,33
	±2,16	±2,01	±2,31	±2,49	±2,54
14	335,66	342,56	343,97	344,57	342,83
	±9,86	±6,53	±7,22	±6,58	±10,17
21	716,0	728,54	720,51	721,91	715,43
	±20,30	±17,10	±16,12	±12,81	±20,09
35 (в среднем)	1991,05	2015,22	1987,44	1990,7	2028,26
в том числе:					
петушков	2146,0	2177,38	2149,17	2149,80	2243,55
	$\pm 47,32$	±52,01	±39,0	±37,56	±45,30
курочек					
	1836,1	1853,05	1825,71	1831,59	1812,96
	$\pm 34,77$	±34,77	±21,28	±29,74	±43,77
Затраты корма	3,23	3,270	3,317	3,264	3,238
на 1 гол., кг					
Затраты корма	1,675	1,684	1,753	1,725	1,696
на 1 кг					
прироста живой					
массы, кг					
Среднесуточный	55,77	56,46	55,67	55,76	56,84
прирост живой					
массы, г					
Убойный выход,	75,72	75,80	76,36	75,15	74,79
%	13,14	75,00	70,50	73,13	17,17

Выход грудной мышцы, %	20,13	21,26	21,68	21,08	20,25
ЕИП*, балл	332,96	335,27	317,57	323,25	335,14

^{*}Европейский индекс продуктивности

Увеличение уровня ввода препарата на основе куркумы (*Curcuma longa*) до 1,0 и 1,5 кг/т корма цыплятам третьей и четвертой опытных групп было эффективнее на ранних сроках выращивания бройлеров. Так в 7 и 14-суточном возрасте живая масса цыплят этих групп превосходила контроль на 2,3 и 3,8% и 2,5 и 2,7%, соответственно. Однако к 21-суточному возрасту повышенные уровни препарата не привели к закономерному увеличению живой массы цыплят третьей и четвертой групп в сравнении с живой массой цыплят второй группы, получавших 0,5 кг/т препарата на основе куркумы (Curcuma longa). К концу выращивания скорость роста бройлеров этих групп замедлилась и по живой массе цыплята преимуществ в сравнении с контролем не имели, ухудшилась и конверсия корма на 4,66 и 2,99%.

Как известно, в кормопроизводстве для улучшения сохранности охлажденного и замороженного мяса, снижения интенсивности перекисного окисления липидов распространена практика дополнительного включения в финишные комбикорма от 100 до 150 г/т корма витамина Е. Бройлеры пятой контрольной группы, получавшие 150 г/т витамина Е, в заключительный период выращивания, имели лучшую продуктивность в сравнении с первой контрольной группой. К концу выращивания живая масса цыплят этой группы была выше контроля на 1,87%. При этом живая масса петушков была выше контроля на 4,5%, что подтверждает данные многочисленных исследований о положительном влиянии витамина Е на их рост и развитие.

Затраты корма на 1 кг прироста живой массы у цыплят пятой контрольной группы были сопоставимы с первой контрольной группой.

В целом опыт проведен на высоком зоотехническом фоне, при этом сохранность цыплят всех опытных групп была высокой, а отход птицы в четвертой группе не был связан с изучаемым фактором.

По результатам анатомической разделки цыплят-бройлеров установлено, что убойный выход мяса в опытных группах, получавших 0,5 и 1,0 кг/т корма куркумы увеличился на 0,08 и 0,64%, а выход грудного филе повысился на 1,13% и 1,55% относительно контроля.

Оценка эффективности выращивания бройлеров по показателю ЕИП показала, что использование 0,5 кг/т куркумы повысило ЕИП на 2,31 балла, а дополнительное включение 150 г/т витамина E, в пятой группе – на 2,18 балла.

Таким образом, по результатам зоотехнических исследований установлено, что наиболее эффективно использовать 0,5 кг/т куркумы. Полученные нами данные, о положительном влиянии куркумы (Curcuma longa) на продуктивность птицы подтверждаются и данными других исследований [84, 89, 93, 94, 120,143].

3.2.2.Переваримость и использование питательных веществ корма, интенсивность обменных процессов в организме птицы;

Данные физиологического опыта, представленные в таблице 3.7, согласуются с полученными зоотехническими результатами. Увеличение живой массы цыплят-бройлеров во второй и пятой опытных группах связано с более интенсивной скоростью протекания обменных процессов в организме птицы, что подтверждается и данными биохимических и гематологических показателей крови, химическим и витаминным составом печени, анализом минерализации большеберцовых костей, а также гистологическими исследованиями печени и поджелудочной железы.

Таблица 3.7 – Влияние различных уровней включения куркумы на переваримость и использование питательных веществ корма (%) цыплятами – бройлерами в возрасте 30-33 суток, М±m, n=3 (Опыт 1)

Показатель	Группа						
	1(к)	2	3	4	5(к)		
Переваримость:							
протеина	95,74±0,4	95,75±0,4	95,87±0,47	95,01±0,47	95,58±0,47		
сухого вещества корма	79,2±0,3	75,24±0,3	76,54±0,40	77,0±0,40	78,6±0,40		
жира	78,6±0,3	83,75±0,4	82,4±0,44	84,54±0,44	89,4±0,44		
клетчатки	31,8±0,8	31,1±0,8	30,9±0,79	35,25±0,79	30,4±0,79		
Использование:							
азота	66,56±0,3	65,9±0,3	66,5±0,27	60,1±0,27	65,4±0,27		
кальция	61,1±0,2	62,8±0,2	62,3±0,20	66,8±0,20	70,3±0,20		
фосфора	45,1±0,1	50,91±0,1	50,99±0,12	49,76±0,12	53,61±0,12		
Доступность:							
лизина	94,5±0,5	94,28±0,4	94,72±0,44	93,2±0,44	95,7±0,45		
метионина	94,9±0,4	94,77±0,5	95,3±0,39	95,25±0,39	96,23±0,40		

Оценивая влияние добавок куркумы на переваримость и доступность питательных веществ корма необходимо отметить, что бройлеры четвертой и пятой опытных групп характеризовались более интенсивным липидным обменом в сравнении цыплятами контрольной группы. Так показатель переваримости жира был выше контроля на 5,94; 10,8%. Показатель переваримости протеина был высокий во всех группах и находился на уровне 95,01-95,87%, а переваримость

клетчатки корма составляла 30,4-35,25%. Использование азота во всех опытных группах находилось в пределах 65,9 против 66,56%. в контроле.

Липиды организма птицы и млекопитающих по составу и биологическому значению абсолютно одинаковые, но вот по протеканию самого процесса обмена липидов птицы отличаются.

В желудке птицы кормовые липиды не перевариваются, а уже в тонком кишечника происходит расщепление отделе ИΧ всасывание. двенадцатиперстной кишке соли желчных кислот (холевая, дезоксихолевая и др.) превращают основные компоненты кормовых жиров (триацилглицеролы) в эмульсию, которая далее под действием поджелудочной липазы расщипляется до моноацилглицеролов и свободных жирных кислот. Далее происходит всасывание мицелл клетками слизистой оболочки кишечника через отверстия между микроворсинками. Активность поджелудочной железы возрастает с повышением липидов в рационе. Так как лимфатическая система у птиц развита слабо, то всю центральную часть ворсинок занимают сеть кровеносных капилляров, значит все липиды из кишечника попадают через кровеносную сеть в портальную систему и доставляются непосредственно В печень. Так как липиды корма перевариваются в желудочно-кишечном тракте птицы, а всасываются и расщепляются в тонком отделе кишечника, то лучшее усвоение жира, возможно, связано с лучшем его всасыванием ворсинками кишечника, так как куркума улучшает пристеночное пищеварение [46], обладает бактерицидным эффектом и подавляет рост патогенной микрофлоры, что положительно влияет на состояние самих ворсинок кишечника [74, 79, 81, 108].

Обогащение рационов витамином Е в пятой группе, который обладает гепатопротекторными свойствами, повысило усвоение жира на 10,8% в сравнении с контролем.

Жирные кислоты поступают в печень из многих источников, но основная их часть поступает из кишечника. Печень является важнейшим органом, где происходит образование кетоновых тел, как продуктов специфического биосинтетического процесса. Попадая в кровь, кетоновые тела могут окисляться в

мышцах, почках и мозге, где они вместе с глюкозой служат источником энергии в случае голодания. Печени принадлежит важная роль по поддержании уровня липидов в крови. При повышении их печень активно утилизирует липиды, а при недостатке — синтезирует и высвобождает их в кровь.

Нами установлено, (таблица 3.8), что содержание протеина в печени у цыплят всех групп, было выше первой контрольной группы на 2,68; 0,87; 2,3; 2,04%, а жира - на 4,47; 6,98; 4,18; 5,04%, соответственно.

При этом в опытных группах повышалось и депонирование жирорастворимых витаминов А и Е на 6,65; 25,69; 7,99% и 79,53; 52,48; 45,04%, а содержание каротиноидов повысилось в сравнении с контролем на 48,84 и 25,58%. По-нашему мнению, это связано с лучшем функциональным состоянием печени цыплят опытных групп, которые лучше переваривали питательные вещества корма, обеспечивая птицу биологически активными веществами и витаминами.

Таблица 3.8 - Химический состав (%) и содержание витаминов и каротиноидов (мкг/г) в печени цыплят-бройлеров в возрасте 35 суток (Опыт 1)

Показатель	Группа							
Tiorasaresib	1(к)	2	3	4	5(κ)			
протеин	66,98	69,66	67,85	69,28	69,02			
жир	10,82	15,29	17,80	15,00	15,86			
Витамин А	55,67	59,37	69,97	60,12	54,85			
Витамин Е	8,06	14,47	12,29	11,69	17,81			
Витамин В2	12,34	12,38	11,29	11,18	12,33			
Каротиноиды	0,43	0,64	0,54	0,54	0,54			

По содержанию витамина B_2 значительных достоверных различий между группами не установлено.

Полученные в процессе проведения балансовых исследований результаты, а также анализ химического состава печени и уровень депонирования в ней биологически активных веществ подтверждают позитивное влияние куркумы (Curcuma longa) и витамина Е на усвоение бройлерами питательных веществ рациона и свидетельствуют о ее положительном влиянии на белковый и липидный обмен.

Таблица 3.9 - Биохимические и гематологические показатели крови у цыплятбройлеров в возрасте 33 суток, (n=3) $M\pm m$ (Опыт 1)

Показатель	Единица			Группа	Группа					
Показатель	измерения	1(к)	2	3	4	5				
Белок общий	г/л	29,80	35,0	28,89	30,55	32,59				
		±0,21	±2,0	±0,49	±0,25	±0,79				
Глюкоза	ммоль/л	11,84	11,77	12,45	12,46	11,84				
		±0,29	±0,21	±0,44	±0,39	±0,29				
Холестерин	ммоль/л	2,59	2,66	2,93	3,23	2,79				
		±0,15	±0,2	±0,16	±0,03	±0,04				
Мочевая кислота	мкмоль/л	218,8	440,5	275,1	320,6	166,05				
		±21,79	±13,88	±19,20	±2,19	±21,79				
АЛТ	ед/л	11,7	13,95	14,6	24,6	15,5				
		±0,28	±1,22	±0,10	±1,04	±1,49				
ACT	ед/л	456,5	356,1	379,1	412,5	349,0				
		±22,27	±6,05	±5,26	±44,41	±8,23				
Щелочная	ед/л	13959	8700	11565	12792	12540				
фосфатаза		±43,2	±907,1	±532,4	±134,36	±944,6				
Лейкоциты	WBC*10 ⁹ /л	26,5	29,1	25,8	23,8	25,8				
		±2,55	±3,77	±1,60	±1,59	±1,55				
Псевдоэозинофилы	%	35,5	31,4	29,8	25,0	23,6				
		±3,13	±11,74	±3,21	±2,28	±2,80				

Лимфоциты	%	61,1	62,2	65,7	72,4	74,2
		±3,30	±15,59	±3,04	±2,98	±3,03
Моноциты	%	0,6	1,0	0,5	0,4	0,2
		$\pm 0,03$	±0,8	±0,18	±0,28	±0,0
Эозинофилы	%	2,6	1,75	3,5	1,8	1,6
		±0,39	±0,3	±0,32	$\pm 0,55$	±0,20
Базофилы	%	0,3	0,6	0,6	0,4	0,4
		±0,03	±0,18	±0,09	±0,09	±0,03
Эритроциты	RBC*10 ¹² /л	2,5	2,7	2,7	2,4	2,5
		±0,11	±0,20	±0,05	±0,05	±0,10
Гемоглобин	г/л	126,0	138,7	133,0	121,0	125,3
		±7,37	±8,57	±3,21	±3,06	±3,53
Гематокрит	%	31,5	35,1	33,6	31,0	32,3
		±1,47	±2,15	±0,68	±1,03	±1,13

Анализ гематологических и биохимических показателей крови бройлеров (таблица 3.9) и полученные нами данные согласуются с зоотехническими и физиологическими показателями и свидетельствуют о том, что улучшение продуктивности бройлеров опытных групп получено за счет увеличения биосинтеза белка и положительного влияния добавок куркумы на показатели белкового обмена. По содержанию общего белка бройлеры второй опытной группы превосходили контрольных аналогов из первой и пятой контрольных групп на 17,45 и 6,89%. Уровень холестерина и глюкозы во всех группах находился в пределах физиологических норм 1,5-4,6 ммоль/л и 11-27,5 ммоль/л соответственно, что свидетельствует об отсутствии негативного влияния изучаемых дозировок куркумы на состояние печени. Отмечено незначительное повышение уровня АЛТ и АСТ, и мочевой кислоты, однако проведенные гистологические исследования значительных изменений не выявили гистоструктур печени при использовании данных дозировок.

В целом анализ гематологических и биохимических показателей крови свидетельствует, что дозировка куркумы (*Curcuma longa*) 500 г/т корма не оказывает негативного влияния на организм птицы.

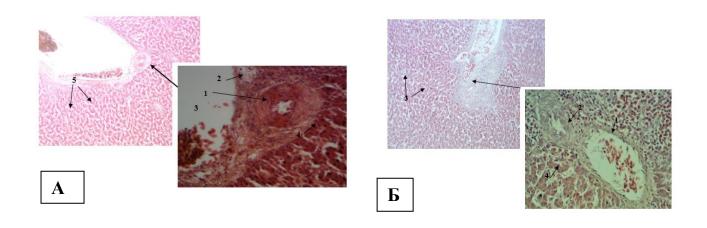
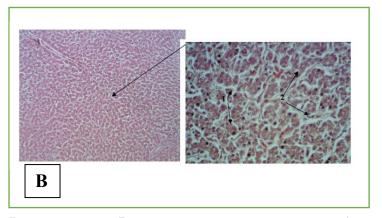

Оценка состояния минерального обмена, свидетельствует о том (таблица 3.10), что включение 500 г/т корма куркумы не оказывает негативного влияния на минерализацию большеберцовой кости 5-недельных бройлеров второй опытной группы.

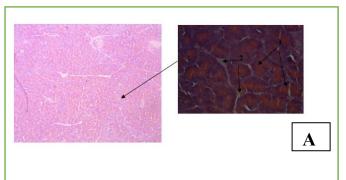
Таблица 3.10 - Содержание золы, кальция, фосфора (%) в большеберцовой кости цыплят-бройлеров кросса «Росс 308» в возрасте 35 суток в расчете на воздушное сухое в-во, n=6 (Опыт 1)

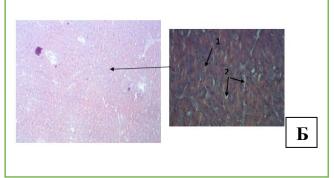
Показатель			Группа		
Hokusuresib	1 (ĸ)	2	3	4	5 (K)
Зола	48,66	49,23	46,43	45,93	47,50
Ca	18,69	18,77	17,26	17,14	17,61
P	8,82	8,50	8,24	8,08	8,24

Существенных различий по депонированию кальция, фосфора и золы у цыплят второй группы в сравнении с контролем не отмечено. При увеличении ввода куркумы до 1 и 1,5 кг/т корма отмечается незначительное снижение этих показателей.

Безопасность применения куркумы в указанных дозировках подтверждена проведенными нами гистологическими исследованиями печени (рисунок 7) и поджелудочной железы (рисунок 8) цыплят бройлеров в возрасте 35 суток.




Рисунок 7 — Фрагменты печени цыплят-бройлеров первой (контрольной) группы (А), второй группы (Б) и пятой группы (В) в возрасте 35 суток (увеличение 100 и 400). Стрелками обозначены: А: 1 - артерия; 2 - желчевыводящий проток; 3 - вена; 4 -гепатоциты; 5 - внутридольковые синусоидные капилляры; Б: 1 - вена; 2 - артерия; 3 - внутридольковые синусоидные капилляры; 4 - гепатоциты. В: 1-гепатоциты; 2-внутридольковые синусоидные капилляры.


Все паренхиматозные клетки — гепатоциты вырабатывают оба вида секрета, как экзокринного, так и эндокринного. При малом или большом увеличении светового микроскопа самая большая трубочка, которую можно заметить в каждой ветви соединительнотканного дерева — это ветвь воротной вены. Гепатоциты имеют темную окраску и располагаются неправильными рядами, которые ветвятся и направляясь от периферии дольки, сходятся к ее центральной вене. Между этими неправильными рядами гепатоцитов располагаются светлые щелевидные пространства, представляющие собой синусоиды печени.

Установлено, что печень цыплят опытных групп не имела патологических изменений. От вокругдольковых сосудов (артериолы и венулы) отходят вглубь долек капилляры, вскоре сливающиеся в единые синусоидные капилляры, которые видны как светлые пространства между рядами печёночных клеток и имеют радиальное направление: сходятся к центру дольки, а именно к центральной вене. Гепатоциты: по размеру - крупные, нередко бывают двухядерными и часто содержат полиплоидные ядра, выполняют очень

разнообразные функции (желчеобразование, синтез многих компонентов плазмы веществ, крови, детоксикацию депонирование гликогена и др.). Вокруг капилляров (между окружающими клетками) имеется ними И вокругсинусоидное пространство (пространство Диссе). Непосредственно за ним расположены не только гепатоциты, но и ряд других клеток: перисинусоидальные липоциты (клетки Ито) - содержат мелкие капли жира, депонирующие жирорастворимые витамины, и синтезируют коллаген III, формирующийт ретикулярные волокна, которые поддерживают стенку капилляров; т.н. ямочные (pit-) клетки - NK-киллеры (разновидность лимфоцитов), которые уничтожают собственные видоизменённые клетки организма. На периферии дольки желчные капилляры переходят в вокругдольковые желчные проточки, или холангиолы, образующие триаду с вокругдольковыми артерией и веной. Стенка этих и последующих (междольковых, сегментарных, долевых) желчных протоков включает 2 компонента: однослойный эпителий - кубический (в более мелких протоках) или цилиндрический, - а также тонкий слой рыхлой соединительной ткани. Рядом с желчным протоком всегда находятся два других компонента триады: артерия и ветвь портальной вены.

Поджелудочная является железа одновременно экзокринной эндокринной железой. Основную массу ее клеток образует ацинусы, которые вырабатывают экзокринный секрет. Этот секрет образуют мелкие скопления Лангерганса, которые клеток – островки пронизаны хорошо капиллярной сетью и разбросаны по всей железе. Они вырабатывают инсулин и ацинусы расположены плотно, без какой-либо глюкагон. Внутри долек закономерности; между НИМИ имеется небольшое количество рыхлой соединительной ткани и капилляры

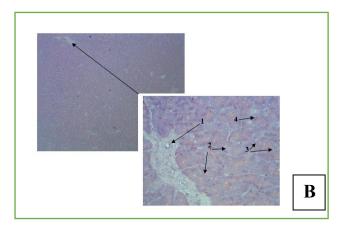


Рисунок 8 — Фрагменты поджелудочной железы цыплят-бройлеров первой (контрольной) группы (A), второй группы (Б) и пятой группы (В) в возрасте 35 суток (увеличение 100 и 400). Стрелками обозначены: А, Б: 1-ацинусы; 2-островки Лангерганса; В: 1-артерия; 2-ацинусы; 3-клетки ацинуса В типа; 4-островки Лангерганса

Поджелудочная железа состоит из соединительнотканной капсулы, которая отделяет железу от прилежащих органов. Орган разделен на дольки соединительнотканными перегородками (септы), которые тянутся от капсулы в глубь органа.

Орган сохраняет отчетливое дольковое строение, состоит из ацинусов. Клетки ацинуса представлены клетками В типа, которые имеют полигональную форму, цитоплазма их равномерно окрашена. Клетки в своем составе имеют одно ядро округлой формы, расположенное центрально или смещенное базально. Ацинусы поджелудочной железы цыплят-бройлеров представляют собой плотно контактирующие между собой экзокринные панкреоциты, которые отделены друг от друга межацинарными прослойками соединительной ткани. По форме пенкреоциты напоминают конусы, вершины которых направлены к центру ацинуса. Эндокринная часть органа представлена панкреотическими остравками или остравками Лангерганса, разбросанными в паренхими поджелудочной делезы. Островки Лангерганса представляют собой клеточные скопления эндокриноцитов округлой формы, расположены они между ацинусами и отделены от них тонкой соединительной прослойкой, а также пронизаны густой сетью капилляров.

3.2.2. Пищевую и биологическую ценность мяса птицы механической обвалки

Мясо бройлера является незаменимым продуктом питания, ценным источником легкоусвояемого белка, незаменимых и заменимых аминокислот.

Содержание белка в мясе – сравнительно постоянно и обусловлено больше генетическими факторами в отличие от содержания жира, которое в значительной степени зависит от состава кормов, потребляемых птицей. Липиды сами не имеют вкусовых особенностей, но вот в сочетании с белками дают мясу высокие вкусовые, ароматические и биологические свойства [109, 128,149].

Вкусовые качества мяса зависят и от содержания в нем воды, экстрактивных веществ и способность мышечных клеток удерживать эту воду в процессе приготовления мяса. Вода является природной составляющей мяса. Она является средой для протекания различных физико-химических и биохимических реакций. В мышечной ткани содержится приблизительно 70-80% влаги. Из них порядка 85% содержится в мышечных волокнах, другая часть в межклеточном пространстве. Вода в мясе прибывает как в самостоятельном виде, так и во взаимодействии с протеинами. Связи взаимодействия влаги с мясом бывают: адсорбционные, осмотические и капиллярные. В производственной практике влага, исходя из ее связи с мясом, бывает прочносвязанная, слабосвязанная полезная (придает сочность мясу) и слабосвязанная избыточная (легко отделяется от мясного сырья в процессе технологической обработки либо самопроизвольно и придает мясу водянистость). Следовательно, одним из наиболее значимых функциональных свойств мяса является его влагосвязывающая способность (ВСС) – степень связи мясного белка с иммобилизованной и свободной влагой – прочносвязанная влага. Влагоудерживающая способность мышц играет важную роль в сохранении высокого качества мяса, так как значительные потери влаги способны ухудшать внешний вид, структуру и пищевую ценность мяса. Потери влаги и снижение влагоудерживающей и влагосвязывающей способности мяса напрямую связаны с последствиями окислительного стресса у птицы при нарушении её кормления и содержания [153, 18, 127]. В стрессовых условиях (например, уменьшение потребления корма, тепловое воздействие, высокая плотность посадки) в организме птицы вырабатываются свободные радикалы, запускающие механизм окислительного стресса.

Их воздействие может вызывать повреждение клеточных мембран белка и тем самым снижать его качество и функциональность не только при жизни животного, но и в послеубойный период. Эти повреждения являются причиной выделения жидкости из мяса в процессе его разделки, хранения и тепловой обработки. Определении ВСС методом прессования, результаты приведены на рисунке 9.

Рисунок 9 - Влагосвязывающая способность мяса птицы, % (Опыт 1)

Повышение ВСС свидетельствует о том, что при переработке мясо меньше теряет влагу, что обеспечивает сочность, нежность продукта, а также увеличивает его выход. Эмульгирующая способность и стабильность эмульсии фарша характеризуют взаимодействие жира, белка и воды [36].

Витамин Е традиционно используют для улучшения вкусовых качеств мяса. Результаты наших исследований, который представлен на Рисунке 9, это подтверждают, что результат пятой группы выше контроля на 17,08% и составляет 86,93% к массе мяса. Результат определения ВСС во второй группе,

где куркуму добавляли в дозе 500 г/т корма выше контроля на 8,53% и составлял 78,38% к массе мяса.

Результаты химического и аминокислотного состава мяса бройлеров (таблица 3.11) показали, что включение 500 г/т корма куркумы способствовало повышению содержания протеина в грудных мышцах петушков и курочек второй опытной группы на 1,73 и 1,89%, увеличение содержания протеина бедренных мышц петушков и курочек увеличилось на 3,81 и 4,74%.

Таблица 3.11 - Химический состав и содержание аминокислот в мышцах бройлеров (на сухое вещество), % в возрасте 35 суток (Опыт 1)

Группа									
1(к)	2	3	4	5					
грудные мышцы бройлеров петушков, n=3									
70,72	69,40	68,66	66,77	68,66					
84,21	85,94	83,22	83,65	79,88					
8,37	5,60	9,46	6,41	12,49					
3,98	4,00	3,87	3,85	4,10					
30,66	31,38	30,59	31,02	29,48					
45,48	46,55	45,36	45,72	44,59					
76,14	77,93	75,95	76,74	74,07					
ицы бройл	перов пету	шков, n=3							
71,45	72,13	74,64	70,69	68,05					
73,69	77,50	78,37	74,06	70,38					
14,71	15,98	12,92	15,11	21,44					
3,29	4,18	4,88	3,85	3,17					
26,88	27,71	26,56	27,31	25,61					
	70,72 84,21 8,37 3,98 30,66 45,48 76,14 щы бройл 71,45 73,69 14,71 3,29	ды бройлеров петуш 70,72 69,40 84,21 85,94 8,37 5,60 3,98 4,00 30,66 31,38 45,48 46,55 76,14 77,93 пцы бройлеров петуп 71,45 72,13 73,69 77,50 14,71 15,98 3,29 4,18	ды бройлеров петушков, n=3 70,72 69,40 68,66 84,21 85,94 83,22 8,37 5,60 9,46 3,98 4,00 3,87 30,66 31,38 30,59 45,48 46,55 45,36 76,14 77,93 75,95 щы бройлеров петушков, n=3 71,45 72,13 74,64 73,69 77,50 78,37 14,71 15,98 12,92 3,29 4,18 4,88	ды бройлеров петушков, n=3 70,72 69,40 68,66 66,77 84,21 85,94 83,22 83,65 8,37 5,60 9,46 6,41 3,98 4,00 3,87 3,85 30,66 31,38 30,59 31,02 45,48 46,55 45,36 45,72 76,14 77,93 75,95 76,74 пцы бройлеров петушков, n=3 71,45 72,13 74,64 70,69 73,69 77,50 78,37 74,06 14,71 15,98 12,92 15,11 3,29 4,18 4,88 3,85					

∑ замен. амин.	41,52	42,51	45,53	41,33	40,14			
Сумма аминокислот	68,4	70,22	72,09	68,64	65,75			
грудных мышц бройлеров курочек, n=3								
Влага	73,35	74,00	75,48	73,58	73,76			
Протеин	83,04	84,93	84,30	85,43	85,99			
Поморожани			Группа					
Показатель	1(ĸ)	2	3	4	5			
Жир	6,74	6,60	8,21	6,98	5,56			
Зола	4,64	4,20	4,49	4,47	4,05			
∑ незам. амин.	31,61	31,53	31,34	28,75	32,28			
∑ замен. амин.	47,03	47,33	46,79	47,1	48,25			
Сумма аминокислот	78,64	78,86	78,13	75,85	80,53			
бедренные	 мышцы брой	леров курс	очек, n=3					
Влага	70,11	71,76	70,87	70,70	70,89			
Протеин	78,00	82,74	76,47	75,67	75,72			
Жир	12,89	7,42	15,38	10,78	15,75			
Зола	4,15	4,54	4,42	4,14	4,00			
∑ незам. амин.	29,04	31,03	28,94	27,77	28,11			
∑ замен. амин.	47,03	47,33	46,79	47,1	48,25			
Сумма аминокислот	76,07	78,36	75,73	74,87	76,36			
При этом солержание		<u> </u>						

При этом содержание жира в грудных и бедренных мышцах петушков и курочек второй группы снизилось на 2,77 и 0,14% и 5,47%. Мясо цыплят второй группы отличалось более полноценным аминокислотным составом и содержало в

ножных мышцах больше незаменимых аминокислот у петушков на 1,82% и 2,29% у курочек.

Дегустационная оценка мяса цыплят-бройлеров (таблица 3.12) показала, что по органолептическим показателям мясо цыплят-бройлеров опытных групп превосходило мясо цыплят контрольной группы. Самые высокие показатели, по данным дегустационной комиссии, были у бройлеров четвертой группы (грудных мышц) и цыплят пятой группы (ножных мышц). Так грудные мышцы у цыплят четвертой группы, в среднем по всем показателям, были оценены в 4,88 балла, а бедренные мышцы той же группы – в 4,44 балла. Грудные мышцы и ножные 5 группы получили в среднем по 4,69 и 4,88 балла соответственно. Бульон же пришелся по вкусу из контрольной группы и получил оценку в среднем 4,19 балла. В ходе проведения дегустационной оценки было отмечено, что добавки куркумы способствовали улучшению цвета бульона, который был окрашен в желтоватый цвет. Как известно, в пищевой промышленности куркумин использовается, как натуральный краситель. В кормопроизводстве для этих целей красители (экстракты бархатцев), используют как натуральные так И синтетические (лукантин красный, желтый) [119, 138, 140].

Таблица 3.12- Органолептическая оценка мяса и бульона бройлеров, средний балл. М±m, n=3 (Опыт 1)

Показатели		Γ	руппа				
Показатели	1к	2	4	5			
	Грудн	ые мышцы	l	1			
Аромат	4,67	4,33	4,67	4,67			
Вкус	4,33	4,0	4,67	4,33			
Нежность (жесткость)	4,0	4,25	5,0	4,75			
Сочность	4,0	4,25	5,0	4,75			
В среднем	4,19±0,12	4,19±0,19	4,88±0,22	4,69±0,19			
Бедренные мышцы							

Аромат	4,67	4,67	4,33	5,0	
Вкус	4,33	5,0	4,33	4,33	
Нежность (жесткость)	4,5	4,75	4,75	5,0	
Сочность	4,5	4,75	4,5	5,0	
В среднем	4,56±0,26	4,81±0,12	4,44,00±0,21	4,88,00±0,07	
	Б	ульон			
Аромат	5,0	4,67	4,33	4,33	
Показатели	Группа				
	1к	2	4	5	
Вкус	4,67	4,33	4,67	4,33	
Нежность (жесткость)	5,0	4,75	4,50	4,25	
Сочность	4,75	4,25	4,25	4,50	
В среднем	4,75±0,1	4,31±0,16	4,50±0,20	4,44±0,26	

Как было изучении описано выше, что при химического аминокислотного состава грудных и бедренных мышц курочек и петушков было выявлено, что содержание протеина во второй группе было больше контроля на 1,73%, что так же превышало его значения в остальных опытных группах. (таблица 3.11) Сумма незаменимых аминокислот во второй и четвертой группах были выше контроля на 0,72 и 0,36% соответственно, а сумма заменимых аминокислот во второй и четвертой группах превышали эти же значения 1,07 0,24% Эти контрольной группы на соответственно. данные свидетельствуют о том, что мясо бройлеров во второй и четвертой группах имели более насыщенный аминокислотами состав, а значит их вкусовых и качественные характеристики выше показателей контрольной группы. Таблица с полным химическим и аминокислотным составом представлена в приложении А7.

При изучении влияния куркумы на продолжительность срока хранения охлажденного и замороженного мяса цыплят-бройлеров были получены следующие результаты.

Через 24 часа после убоя птицы, по завершению срока выращивания, были отобраны образцы грудной мышцы и мясо птицы механической обвалки, которые хранили в условиях бытовой холодильной камеры при температуре от -1 до 4 С на протяжении 10 суток и в условиях морозильной камеры при температуре -18С на протяжении 4-х месяцев. Контроль свежести производили на 1-е; 4-е; 10-е сутки хранения, а также 1 и 4 месяца хранения в замороженном виде.

На первые сутки хранения по органолептическим показателям внешний вид мяса птицы (грудная мышца) во всех группах имела корочку подсыхания была бледно-розового цвета, консистенция плотной и упругой, а при надавливании пальцем образующаяся ямка быстро выравнивалась, соответствовал свежему мясу, а бульон был прозрачный, ароматный, без образований хлопьев. Все эти показатели соответствовали свежему мясу. Дополнительно были проведены химические и микроскопические анализы свежести. Количество микроорганизмов в 1 поле зрения, во всех группах было до 10 микробных клеток, а распада мышечных волокон отсутствовал. Перекисное число липидов охлажденного мяса птицы механической обвалки во всех группах было ниже 0,01% І, а кислотное число было ниже 4,5 мг КОН/г, что соответствовало показаниям свежего мяса (таблица 3.13).

Таблица 3.13 - Изменение перекисного числа, % І и кислотного числа, мг КОН/г мяса цыплят-бройлеров при хранении в охлажденном и замороженном виде (Опыт 1)

Показатель			Группа				
	1 (ĸ)	1 (κ) 2 3 4 5 (κ)					
Охлажденное мясо п	тицы мех	анической	обвалки	3			

³ Мясо птицы механической обвалки - продукт убоя птицы, полученный в результате обвалки потрошеной тушки птицы, в том числе шеи, состоящий из измельченных мышечной, жировой и соединительной тканей без костей. «охлажденное мясо птицы механической обвалки» - мясо птицы механической обвалки, подвергнутое холодильной обработке до температуры в любой

точке измерения продукта от минус 2°C до 0°C;

Кислотное число мясо					
мгКОН/г					
1 сутки хранения	2,16	1,95	2,0	2,10	2,12
4 сутки хранения	1,26	1,06	1,22	0,95	1,12
10 сутки хранения	1,05	2,02	1,36	1,06	1,2
Перекисное число мясо					
% I					
1 сутки хранения	0,014	0,013	0,013	0,013	0,013
4 сутки хранения	0,014	0,015	0,014	0,013	0,014
10 сутки хранения	0,071	0,016	0,184	0,180	0,302
Замороженное мясо	птицы ме	ханическо	й обвалкі	И	
Кислотное число мясо					
мгКОН/г					
1 месяц хранения	1,88	1,31	1,45	1,52	2,50
4 месяца хранения	1,72	2,64	2,12	2,20	2,30
Перекисное число мясо					
% I					
1 месяц хранения	0,034	0,013	0,013	0,014	0,042
4 месяца хранения	0,025	0,069	0,03	0,031	0,032

На четвертые сутки хранения по органолептическим показателям внешний вид мяса птицы (грудная мышца) во всех группах была местами увлажнена, слегка липкая, потемневшая с темно-красной окраской, по консистенции во всех группах мышечная ткань была менее плотная и менее упругая, а образующаяся при надавливании пальцем ямка выравнивалась медленно - в течение минуты. Запах был слегка кисловатый, что не удовлетворяла показателям свежести мяса и

«замороженное мясо птицы механической обвалки» - мясо птицы механической обвалки, сохраняющее в течение всего времени после холодильной обработки до момента использования температуру в любой точке измерения продукта не выше минус 12°C; (TP EAЭC 051/2021)

свидетельствовало о начале порчи продукта. Дополнительно были проведены химические и микроскопические анализы свежести. В поле зрения микроскопа уже были микробные клетки, но их количество не превышало 30 единиц. Разницы между опытными группами и контролем не было обнаружено. Кислотное число мяса птицы механической обвалки во всех группах соответствовало показателям свежего мяса и не превышали предельных значений, а перекисное число соответствовало сомнительной свежести и находилось в пределах от 0,013 до 0,015 % I.

На десятые сутки хранения мяса птицы и мясо птицы механической обвалки во всех группах соответствовало не свежему мясу. Поскольку внешний вид грудных мышц во всех опытных группах был похожим: сильно подсохшая, покрытая слизью корочка подсыхания, консистенция была рыхлой, а запах был сильно кислый, затхлый. Несвежесть мяса и мяса птицы механической обвалки была также подтверждена химическими и микроскопическими анализами свежести. На десятые сутки хранения образцов, в мазках-отпечатках было множество микробных клеток в поле зрения микроскопа - более 30 микробных клеток с преобладанием палочковидных форм, наблюдался значительный распад мышечной ткани, почти полное исчезновение ядер и исчерченности мышечных волокон. Разницы между группами так же не было. Кислотное число мяса птицы механической обвалки во всех группах соответствовало показателям свежего мяса сомнительной свежести и не превышали 9,0 мгКОН/г, а перекисное число соответствовало не свежему мясу (более 0,04 % I) и находилось в пределах от 0,098 до 0,123 % I.

На четвертый месяц хранения (рекомендуемые сроки годности замороженного мяса кур со дня выработки, при температуре воздуха в холодильной камере, обеспечивающей поддержание температуры в толще продукта: - не выше минус 12°С для частей тушек - не более 1 мес.) для размороженного мяса - цвет темно-розовый, с поверхности разреза стекает слегка мутноватый мясной сок, консистенция рыхловатая, запах слегка кислый, что соответствует мясу сомнительной свежести, о чем свидетельствуют показатели

кислотного числа и перекисного числа. Так кислотное число во всех опытных группах соответствует свежему мясу, перекисное число — мясу сомнительной свежести. Анализ свежести мяса проводили согласно ГОСТ 23392-2016.

Установлено, добавки куркумы способствовали процессу замедления окисления липидов. Изменение перекисного и кислотного чисел липидов охлажденного мяса на 4-сутки хранения составило 0,016; 0,184 и 0,18 % І против 0,071 % І в контроле для перекисного числа и 2,02; 1,36 и 1,06 мг КОН/г против 1,25 мг КОН/г для кислотного числа, что соответствует допустимым нормам качества мяса. При проведении бактериоскопии мазков значимых различий между опытными и контрольными группами не отмечено.

3.3. Использование различных дозировок дигидрокверцетина в кормлении цыплят-бройлеров для:

3.3.1. Повышения продуктивности и возможности замены кормовых антибиотиков (Опыт 2)

Для производства органической продукции птицеводства, свободной от содержания остаточных количеств химических и лекарственных препаратов, ведется поиск природных растительных добавок, обладающих ростостимулирующими, антисептическими и антиоксидантными свойствами.

К числу таких добавок можно отнести дигидрокверцетин ($C_{15}H_{12}O_7$) - это полностью натуральный продукт, Российского производства - выработанный из коры лиственницы Даурской [19,51].

В этой связи целью второго опыта было изучить влияние различных уровней включения фитобиотика с антиоксидантными свойствами - дигидрокверцетина и лучшей дозировки куркумы (*Curcuma longa*) (по

результатам первого опыта) на продуктивность бройлеров, качество охлажденного и замороженного мяса бройлеров и целесообразность применения этих антиоксидантов в качестве замены кормовых антибиотиков.

Установлено (таблица 3.14), что включение в комбикорма 5, 10, 15 г/т корма дигидрокверцетина способствовало увеличению живой массы цыплят третий, четвертой и пятой опытных групп в 21-суточном возрасте на 2,7%; 0,8%; 5,4% относительно контроля.

При этом живая масса цыплят третьей опытной группы не уступала по этому показателю цыплятам второй опытной группы, получавших кормовой антибиотик «МаксусG» в дозе 100г/т корма.

К концу выращивания по живой массе цыплята опытных групп, получавших добавки дигидрокверцетина, превосходили контроль на 2,36; 6,05 и 5,42% при снижении затрат корма на 1 кг прироста живой массы на 5,85; 6,64 и 6,58%.

Таблица 3.14 – Продуктивность цыплят - бройлеров кросса «Росс 308», получавших комбикорма с включением дигидрокверцетина М±m, (n=35), (Опыт2).

1 (к) 2 3 4 5 6 Сохранност ь поголовья, 100 100 100 100 100 100 Живая масса, г в возрасте, суток: суточные 39,0±0,34 39,0±0,41 39,0±0,39 39,0±0,34 39,0±0,22 39,0±0,5	Показатель		Группа							
ь поголовья, 100 100 100 100 100 100 100 100 % Живая масса, г в возрасте, суток: суточные 39,0±0,34 39,0±0,41 39,0±0,39 39,0±0,34 39,0±0,22 39,0±0,5	Показатель	1 (ĸ)	2	3	4	5	6			
масса, г в возрасте, суток: суточные 39,0±0,34 39,0±0,41 39,0±0,39 39,0±0,34 39,0±0,22 39,0±0,5	ь поголовья,	100	100	100	100	100	100			
$\pm 1,54$ $\pm 2,39$ $\pm 1,83$ $\pm 1,82$ $\pm 1,57$ $\pm 1,08$	масса, г в возрасте, суток: суточные	124,97	128,17	123,50	122,83	130,03	39,0±0,58 130,80 ±1,08			

14	297,94	319,06	305,61	298,31	318,97	342,56
	±8,12	±9,79	±7,27	±7,18	±6,16	±6,53
21	710,34	725,97	729,52	716,02	748,70	741,59
	±18,01	±17,30	±14,62	±15,30	±14,50	±15,08
35 (в	2084,3	2148,7	2133,4	2210,5	2197,3	2120,97
среднем)						
в том числе:						
петушков	2220,4	2290,7	2280,6	2358,7	2347,1	2167,11
	±55,89	±34,12	±32,69	±33,42	±36,36	<u>+</u> 36,1
	1040.2	2006 7	10060	20.62.2	20.47.5	2074.02
курочек	1948,2	2006,7	1986,2	2062,3	2047,5	2074,83
	±44,24	±34,73	±33,83	±33,1 a	±32,16	<u>+</u> 26,7 б
Затраты	3,355	3,333	3,234	3,325	3,005	3,270
корма на 1						
гол., кг	1 (41	1 501	1.545	1.522	1 522	1 571
Затраты	1,641	1,581	1,545	1,532	1,533	1,571
корма на 1						
кг прироста живой						
массы, кг	58,41	60,24	59,81	62,01	61,63	61,23
чный	30,41	00,24	37,01	02,01	01,03	01,23
прирост						
живой						
массы, г						
Убойный						
выход мяса,	71,5	72,11	72,51	73,26	72,5	73,82
%						
Выход	20,15	21,02	21,20	23,1	21,08	21,28

грудной						
мышцы, %						
ОТ						
потрошённо						
й тушки						
ЕИП	355,94	381,02	387,12	404,76	402,02	389,75

Достоверность различий: $a - p \le 0.05$; $6 - p \le 0.01$

По живой массе петушков и курочек преимущество сравнение с контролем составляла 2,71; 6,23; 2,46% и 1,95; 5,86; 5,1% (разность с контролем достоверна при $p \le 0,05$ и $p \le 0,01$ у курочек четвертой и пятой групп соответственно).

Необходимо отметить, что в начале выращивания в 7- и 14-суточном возрасте более эффективно было включение 15 г/т корма дигидрокверцетина, который обеспечивал повышение живой массы на 4,0% и 7,1% за счет лучшего распределения препарата в составе комбикорма.

По результатам анатомической разделки цыплят-бройлеров установлено, что убойный выход мяса в опытных группах с дигидрокверцетином и шестой группой, получавшей 500 г/т куркумы, был выше контрольных показателей на 1,01%; 1,76%; 1,0%; 2,32% при этом использование 5; 10; 15 г/т корма дигидрокверцетина и 500 г/т корма куркумы позволило повысить выход грудного филе, относительно потрошёной тушки на 1,05%; 2,95%; 0,93% и 1,13% относительно контроля.

Как известно, включение кормовых антибиотиков в состав комбикормов, обеспечивает увеличение продуктивности птицы, так получено закономерное увеличение живой массы цыплят второй опытной группы, получавших комбикорма с введением 100 г/т корма антибиотика во все возрастные периоды. По этому показателю цыплята этой группы превосходили контроль в 7, 14, 21 и 35 суточном возрасте на 2,6; 7,7; 2,2 и 3,09% при снижении затрат корма на 1 кг прироста живой массы на 3,66%. Также подтверждены результаты, полученные в опыте 1 по оценки эффективности применения куркумы в дозе 500г/т корма. К концу выращивания цыплята 6 опытной группы по живой массе превосходили

контроль на 1,76% при снижении затрат корма на 1 кг прироста живой массы на 4,27%.

Оценка мясных качеств бройлеров показала, что добавки 10 г/т корма дигидрокверцетина (четвертая группа) и 500 г/т куркумы (шестая группа) позволили увеличить убойный выход мяса у цыплят этих групп на 1,76 и 2,32%, при этом выход грудного филе повысился на 2,92 и 1,13% соответственно.

Оценивая эффективность выращивания бройлеров по Европейскому индексу продуктивности, установлено, что лучшие показатели получены нами у цыплят четвертой и шестой опытных групп, превышение этого показателя в сравнении с контролем составило 48,82 балла и 33,81 балла, а в сравнении со второй группой (кормовой антибиотик) на 23,74 и 8,73 балла. Полученный результат показывает, что данные препараты по эффективности не уступают кормовому антибиотику.

3.3.2. Улучшения переваримости и использования питательных веществ корма, и его влияние на состав микрофлоры желудочно-кишечного тракта; (Опыт 2)

Данные физиологического опыта, представленные в таблице 3.15, согласуются с полученными зоотехническими результатами. Установлено, что повышение скорости роста бройлеров опытных группах связано с более интенсивной скоростью протекания обменных процессов в организме, обусловленной улучшением переваримости и доступности питательных веществ из комбикормов, что подтверждается в том числе и данными биохимических и гематологических показателей крови, химическим и витаминным составом печени, интенсивности минерального обмена, а также гистологическими исследованиями печени, кишечника, мышечной ткани и поджелудочной железы, анализом состава микробиома слепых отростков кишечника.

Лучшие показатели по переваримости и использованию питательных веществ рациона получены у цыплят четвертой и шестой опытных групп. По переваримости протеина, жира, клетчатки бройлеры этих групп превосходили контроль на 1,41 и 3,27%, 4,0 и 2,0%, 5,83 и 0,32%. По использованию азота, кальция и фосфора преимущество в сравнении с контролем составило 3,77 и 3,14%; 7,2 и 4,7%; 7,7 и 5,5%.

Таблица 3.15 – Результаты физиологического опыта на бройлерах кросса «Росс 308» в возрасте 30-33 суток, М±m, n=3(Опыт 2).

Показатель, %			Гр	уппа				
Tiokasaresib, 70	1(ĸ)	2	3	4	5	6		
Переваримость:	Переваримость:							
протеина	94,49	96,43	94,27	95,9	94,14	97,76		
сухого вещества корма	80,7	83,0	73.5	79,5	72,6	79,4		
жира	87,5	92,1	88,1	91,5	85,1	89,5		
клетчатки	21,02	37,76	15,04	26,85	11,27	21,34		
Использование:								
азота	47,34	52,14	46,86	51,11	45,54	50,48		
кальция	60,7	73,4	66,3	67,9	52,6	65,4		
фосфора	29,8	43,0	30,5	37,5	23,4	35,3		
Доступность:								
лизина	95,7	94,5	94,9	94,72	93,2	94,28		
метионина	95,72	95,25	94,86	95,6	94,77	95,85		

Включение в комбикорма второй группы кормового антибиотика позволило повысить переваримость протеина, сухого вещества корма, жира, клетчатки на 1,94; 2,3; 4,6; 16,74%. Закономерно улучшилось использование азота, кальция и фосфора на 4,8; 12,7; 13,2%. Вместе с тем снизилась доступность лизина и метионина на 3 и 0,47%, что, возможно, связано с подавлением антибиотиком нормофлоры кишечника птицы. Применение дигидрокверцетина в

дозе 15 г/т корма обеспечило сравнимые с контролем показатели по доступности метионина и лизина и не оказало негативного влияния на снижение содержания полезной микрофлоры [24].

По показателям переваримости и усвоению питательных веществ цыплятами третий и пятой опытных групп значительных различий с контролем не отмечено.

Таким образом зоотехнические и физиологические исследования показали, что добавки дигидровкерцетина и куркумы способствуют улучшению интенсивности обменных процессов, о чем свидетельствуют гематологические показатели, представленные в таблице 3.16.

Таблица 3.16 - Биохимические и гематологические показатели крови у 33суточных цыплят-бройлеров, (n=3)

Показатель			Гру	ппа		
Hokusuresib	1(ĸ)	2	3	4	5	6
Белок общий, г/л	40,31	38,01	40,94	36,12	36,50	36,48
Велок оощий, 1/л	±0,34	±0,14	±0,21	±0,75	±0,23	±0,48
Трипсин, ед/л	1139,0	1355,0	951,3	962,3	780,0	1058,6
трипсин, ед/л	±15,25	±11,5	±12,16	±11,83	±9,75	±17,33
Гиокора ммонг/п	12,01	14,11	13,08	13,60	14,71	12,06
Глюкоза, ммоль/л	$\pm 0,08$	±0,02	±0,06	±0,11	±0,26	±0,03
Холестерин,	2,74	2,92	3,33	2,78	2,68	3,43
ммоль/л	±0,01	±0,01	±0,07	±0,01	±0,02	±0,02
Мочевая кислота,	190,61	151,08	131,83	315,47	236,51	224,01
мкмоль/л	±1,75	±2,42	±2,01	±3,64	±5,15	±2,01
АЛТ, ед/л	16,12	9,03	13,14	12,2	13,35	16,14
Алт, одил	$\pm 0,17$	±0,02	±0,03	±0,04	±0,09	±0,03
АСТ, ед/л	478,57	337,0	415,19	492,93	428,51	471,20
АСТ, СДЛ	±4,56	±6,19	±6,19	±3,23	±7,12	±4,28

Щелочная	6130,3	9067,6	9144,6	9384,6	11189,3	6288,0
фосфатаза, ед/л	±216,08	±55,83	±34,33	±114,08	±280,1	±167,5
Лейкоциты	28,1	26,4	27,8	26,2	24,6	27,1
WBC*10 ⁹ /л	±3,31	±1,85	±1,43	±3,33	±1,24	±0,52
Псевдоэозинофилы,	38,3	37,0	40,4	44,7	31,9	45,5
%	±1,23	±5,75	±4,70	±2,69	±4,17	±3,57
Пимфонити 0/	55,5	56,0	52,7	49,2	62,7	44,2
Лимфоциты, %	±0,55	±6,48	±4,44	±2,50	±4,52	±4,56
Моноциты, %	0,5±0,15	0,4±0,21	0,4±0,18	0,4±0,15	0,1±0,03	0,5±0,14
Эозинофилы, %	5,5±1,30	6,4±0,78	6,3±1,42	5,4±0,14	5,0±0,34	9,5±1,36
Базофилы, %	0,2±0,05	0,3±0,03	0,2±0,05	0,2±0,03	0,3±0,11	0,3±0,03
Эритроциты, RBC*10 ¹² /л	3,0±0,19	2,9±0,11	2,9±0,02	2,8±0,24	2,8±0,06	2,9±0,03
Гоморнобин, г/н	148,0	141,7	145,7	139,7	135,3	145,3
Гемоглобин, г/л	±8,50	±5,54	±0,66	±12,44	±3,18	±1,20
Гематокрит, %	37,4	36,3	37,2	36,3	34,9	37,5
т сматокрит, 70	±2,05	±1,48	±0,16	±3,06	±0,86	±0,38

Анализ гематологических и биохимических показателей крови бройлеров (таблица 3.16) и полученные нами данные показали, что улучшение продуктивности бройлеров опытных групп получено за счет увеличения биосинтеза белка и положительного влияния добавок дигидрокверцетина на показатели белкового обмена. Как известно, у большинства птиц количество белка варьирует между 30-60 г/л. Две самые важные фракции белка – альбумин и глобулин. Альбумин является основным белком сыворотки крови птицы. Гипопротеинемия, или низкое содержание белка (меньше 2.5 г/дл), обычно является результатом гипоальбуминемии. Обычно это бывает при хронической болезни печени ИЛИ почек, плохом питании, нарушении пищеварения, хронической потере крови, стрессе или голодании. Очень низкий уровень белка, меньше 2.5 г/дл, говорит о тяжелом состоянии птицы и плохом прогнозе на

выживание. Гиперпротеинемия, или повышенное содержание белка (больше 6 г/дл), говорит об обезвоживании, шоке, воспалении, травме или инфекции.

По содержанию общего белка бройлеры третий опытной группы, получавших 5 г/т корма дигидрокверцетина превосходили контрольных аналогов на 1,56%, а цыплята четвертой и пятой опытных групп, получавшие 10 и 15 г/т корма дигидрокверцетина по этому показателю значительных отличий с контролем не имели.

Установлено, что лейкоцитарная формула и содержание эритроцитов у цыплят всех групп практически не отличались и находились в пределах физиологических норм для данного возраста птицы.

Отмечено незначительное повышение уровня глюкозы в третьей и четвертой опытных групп 13,08 и 13,6 ммоль/л против 12,01 ммоль/л в контроле. В целом уровень глюкозы в крови цыплят всех групп находился в пределах физиологической нормы и составлял от 12,01 до 14,71 ммоль/л.

Оценка физиологического состояния печени показала, что не отмечено увеличения уровня аланинаминотрансфераза (АЛТ) у цыплят второй, третий, четвертой и пятой опытных групп. Значения этого показателя были ниже контроля на 43,98% 18,49% 24,32% 17,18%, что свидетельствует об отсутствии гепатотоксического влияния на клетки печени антибиотика «МаксусС» и исследуемых доз дигидрокверцетина. АСТ находилась в диапазоне от 337,0 до 492,93 ед/л против 478,57 ед/л в контроле.

Мочевая кислота (Uric acid) — основной продукт метаболизма азотосодержащих соединений у птиц. Повышение уровня мочевой кислоты случается при заболевании почек. Обычные показатели работы почек у млекопитающих — мочевина и креатинин — не являются диагностическими для работы почек у птиц. Анализ мочевины у птиц не имеет диагностической ценности, однако, мочевина может быть обнаружена в крови при шоке или критическом обезвоживании. Подобные ситуации могут привести к дисфункции почек. В отличие от млекопитающих, производящих мочевину в результате распада аминокислот, птицы производят мочевую кислоту. Мочевая кислота

достаточно нетоксичная по сравнению с мочевиной или аммонием, основными продуктами разложения аминокислот у млекопитающих. Во всех группах уровни моченой кислоты находятся в пределах физиологической нормы [42].

Основным источником щелочной фосфатазы является костная ткань. Увеличение уровня ее активности свидетельствует о нарушении минерального обмена, что может быть связано с увеличением интенсивного обмена кальция и фосфора между костной тканью и организмом птицы.

Таблица 3.17 — Содержание золы, кальция, фосфора (%) в большеберцовой кости цыплят-бройлеров кросса «Росс 308» в возрасте 35 суток в расчете на воздушное сухое в-во, n=6 (Опыт 2)

Показатель	Группа								
TTORUSATESIB	1 (κ) 2 3 4 5								
Зола	51,30	52,64	51,00	52,08	51,40	51,24			
Ca	18,80	19,14	19,00	19,24	19,19	19,35			
P	8,46	8,47	8,76	8,81	8,78	8,72			

Вместе с тем анализ содержания кальция, фосфора и золы в костяке бройлеров (таблица 3.17) не выявил существенного отрицательного влияние изучаемых добавок на депонирование этих элементов в большеберцовой кости цыплят. Содержание кальция во всех опытных группах было выше контроля на 0,34; 0,2; 0,44; 0,39 и 0,55%; а фосфора на 0,3; 0,35; 0,32 и 0,26%. Таким образом, по нашему мнению, увеличению активности щелочной фосфатазы в 1,3 – 1,8 раза связаны с активным ростом цыплят и не сказывается на снижении активности минерального обмена.

Представленный в таблице 3.18 химический состав печен цыплят бройлеров показал, что добавки куркумы и дигидрокверцетина в изучаемых дозировках не оказали выраженного гепатотоксического влияния на состояние печени цыплят опытных групп. О чем свидетельствуют более высокий уровень содержания протеина при снижении уровня содержания жира [21].

Таблица 3.18- Химический состав (%) и содержание витаминов и каротиноидов (мкг/г) в печени цыплят-бройлеров в возрасте 35 суток,n=3(Опыт 2)

Показатель	Группа								
Hokasatens	1 (ĸ)	2	3	4	5	6			
влага	72,70	73,45	73,82	73,55	73,98	71,49			
протеин	69,63	72,05	72,97	72,96	73,12	72,69			
жир	15,50	12,67	12,82	14,38	11,79	13,17			
зола	5,04	4,94	5,08	4,72	5,13	5,14			
Показатель		Группа							
	1 (ĸ)	2	3	4	5	6			
Витамины, мг/кг:	262,97	346,59	260,89	219,5	231,46	303,56			
A									
E	18,15	17,53	11,86	12,67	11,96	9,25			
B_2	12,27	12,52	11,43	11,68	12,17	11,50			
каротиноиды	0,55	0,48	0,26	0,53	0,39	0,21			

Установлено, что содержания протеина в печени цыплят 3, 4, 5 и 6 опытных групп было выше контроля на 4,08 ;4,78; 5,01 и 4,39%, при снижении содержания жира на 17,29; 7,23; 23,93 и 15,03% соответственно и не уступали соответствующим показателям цыплят второй опытной группы, получавших кормовой антибиотик.

Нами отмечено достоверное увеличение содержание витамина A на 31,8% в печени бройлеров второй опытной группы, а также незначительное снижение уровня этого витамина у цыплят четвертой и пятой опытных групп. По депонированию в печени витаминов E, B₂ и каротиноидов существенных различий с контролем не отмечено.

Результаты изучения гистологической структуры печени цыплят-бройлеров (рисунок 10) показали, что у птиц всех опытных групп она

соответствовала норме, патологических изменений не обнаружено. У птиц форма печени, по сравнению с другими позвоночными, более постоянна. Согласно литературным данным динамика развития этой железы у птиц разных пород и кроссов отличается. В то же время вопрос о влияние на ее гистологическую структуру антиоксидантов недостаточно изучен. Она состоит из трех долей: более крупная – правая, левую латеральную и, связывающую их левую медиальную.

Можно сделать вывод о том, что антиоксиданты, в используемых дозировках, не оказывают негативного влияния на печень. Её гистологическая структура у цыплят опытных групп не имела существенных изменений по сравнению с контрольной группой и соответствовала физиологической норме.

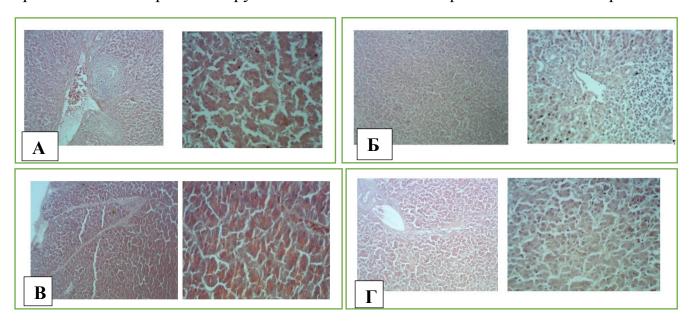


Рисунок 10 — Фрагменты печени цыплят-бройлеров (A) первой (контрольной) группы, (Б) третьей группы, (В) четвертой группы, (Г) пятой группы в возрасте 35 дней (увеличение 100 и 400).

Волокна поперечнополосатых мышц чрезвычайно крупные и каждое содержит много ядер. Почти вся цитоплазма мышечных клеток состоит из сократительного аппарата. Вся мышца окружена толстой оболочкой из относительно плотной соединительной ткани — эпимизием. Из нее внутрь мышцы входят кровеносные сосуды, которые идут там в волокнистых перегородках, отходящих от эпимизия в глубь ткани и окружающих пучки мышечных волокон;

эти перегородки образуют перемизий и служат так же для проведения в мышцу лимфатических сосудов и нервов. От перемизия отходят тонкие прослойки соединительной ткани, эти прослойки образуют сеть между всеми мышечными волокнами и называются эндомизием. Он содержит много капилляров и нервные волокна, иннервирующие мышечные клетки. На рисунке 11 представлены образцы мышечной ткани цыплят-бройлеров, в возрасте 35 дней, которые получали добавки дигидрокверцетина в различных дозировках. Видимых изменений не обнаружено.

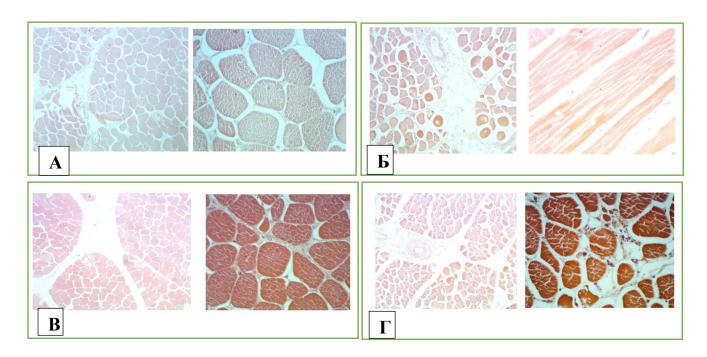


Рисунок 11 — Фрагменты мышечной ткани цыплят-бройлеров (A) первой (контрольной) группы, (Б) третий группы, (В) четвертой группы, (Г) пятой группы в возрасте 35 дней (увеличение 100 и 400).

На рисунке 12 представлены образцы кишечника птицы, который участвует в абсорбции основной массы питательных веществ. В норме ворсинки тощей кишки представляют собой длинные пальцевидные выступы, которые простираются в просвет тонкой кишки и выстланы простым столбчатым эпителием с несколькими бокаловидными клетками, расположенными между ними. Под эпителием собственная пластинка представляет собой рыхлую и очень клеточную соединительную ткань неправильной формы (Wickramasuriya S.S. et

а1., 2022). Большинство клеток внутри стенок коллагеновых фибрилл являются плазматическими клетками, хотя могут быть обнаружены многие другие типы клеток (включая почти все истинные клетки крови). Кишечные крипты располагаются между ворсинками и глубоко проникают в слизистую оболочку. Наружный слой представляет собой мышечную оболочку, которая формируется из внутренней циркулярной и наружной продольной гладкой мускулатуры [2, 3, 30, 74, 148, 154].

Ворсинки увеличивают площадь поверхности всасывания. ДЛЯ Увеличенная площадь всасывания полезна, потому что переваренные питательные вещества (включая моносахариды и аминокислоты) проходят в полупроницаемые ворсинки посредством диффузии, которая эффективна только на коротких расстояниях. Другими словами, увеличение площади поверхности (соприкасающейся с жидкостью в просвете) уменьшает среднее расстояние, пройденное молекулами питательных веществ, поэтому эффективность диффузии возрастает. Ворсинки связаны cкровеносными сосудами, поэтому циркулирующая кровь уносит эти питательные вещества, ворсинки выстланы простым столбчатым эпителием микроворсинками несколькими бокаловидными клетками между ними.

Антиоксиданты улучшают абсорбцию ворсинок, увеличивают выработку слизи бокаловидными клетками эпителия выстилки, пролиферацию клеток в собственной пластинке, увеличивают кровоснабжение эпителиальной выстилки и вызывают развитие кишечных крипт для выработки большого количества слизи и кишечных гормонов, которые помогают в поглощение, а также улучшили мышечный слой гладких мышц, которые помогают движению питательных веществ в кишечнике для всасывания. Таким образом, в этом исследовании мы использовали различные уровни доз антиоксидантов для достижения высоких преимуществ в отношении всасывания в кишечнике.

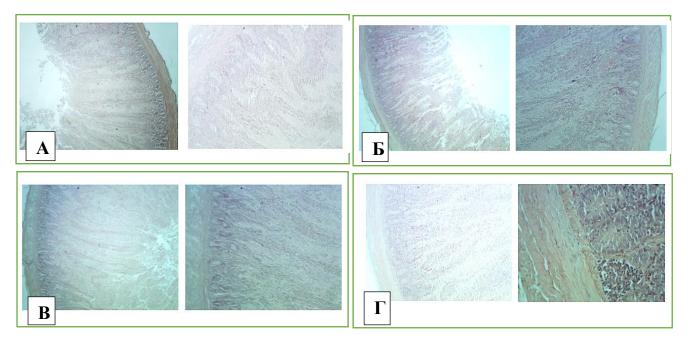


Рисунок 12 — Фрагменты кишечника цыплят-бройлеров (A) первой (контрольной) группы, (Б) третий группы, (В) четвертой группы, (Г) пятой группы в возрасте 35 дней (увеличение 40 и 100).

При изучении результатов проведенного анализа образцов содержимого слепых отростков кишечника цыплят-бройлеров методом ПЦР было обнаружено следующее: в группе № 5, где уровень ввода дигидрокверцетина был самым высоким и составлял 15 г/т корма, самый высокий уровень представителей нормальной микрофлоры, в том числе бактериоидов $(5,0*10^7 \text{ клеток/г})$, клостридий $(7,9*10^6 \text{ клеток/г})$, лактобацилл $(1,3*10^6 \text{ клеток/г})$, как показано на рисунке 13.

Вместе с норофлорой, во всех образцах было отмечено присутствие условно-патогенных микроорганизмов, как указано на рисунке 14. Представители данной группы бактерий в норме присутствуют в желудочно- кишечном тракте птицы, однако в случае ослабления иммунитета они могут вызвать различные инфекционные заболевания. Так содержание условно-патогенных пептострептококков в 3 группе, где дозировка дигидрокверцетина была на уровне 5 г/т корма, было ниже чем в контрольной группе и составляло 1,3*10³ клеток/г, а в 5 группе их содержание было на уровне контрольной группы и составляло 2,0*10³ клеток/г. Количество энтеробактерий было более низким во 2, 3 и 5

группах по сравнению с контролем и составляли $2,0*10^3$; <п.д.о.; $6,3*10^3$ против $6,3*10^3$. Тем не менее, важно отметить, что энтеробактерии являются одним из самых устойчивых к антибиотикам возбудителями инфекций. При снижении иммунитета, они вызывают у птиц хронический трахеит, пневмонию и аэросаккулиты (воспаление воздушных мешков).

Рисунок 13 - Содержание некоторых групп микроорганизмов в пробах, $(\kappa \text{леток/г})*10^5.$

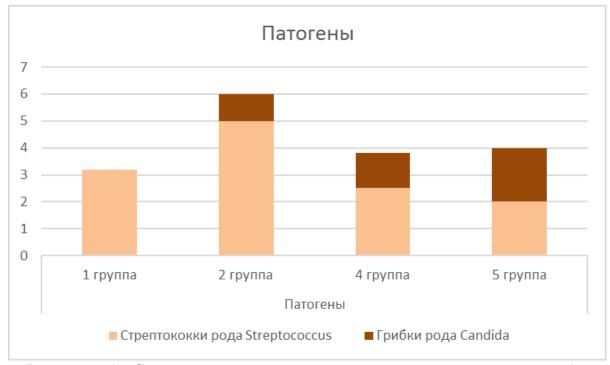


Рисунок 14 - Содержание некоторых групп микроорганизмов в пробах, $(\kappa \text{леток/г})*10^5$

Во всех образцах было обнаружено присутствие патогенных микроорганизмов, показано на рисунке 15.

Рисунок 15 - Содержание некоторых групп микроорганизмов в пробах, (клеток/г) $*10^5$.

Содержание стрептококков в опытных группах с дигидрокверцетином под номерами 3 и 5 было значительно ниже контроля (<п.д.о.; 2,0*10³ против 3,2*10³.), однако в группе 2, где использовали кормовой антибиотик, такого эффекта обнаружено не было, напротив, уровень стрептококков превышал контроль и составлял 5,0*10³ клеток/г. Стрептококки способны вызвать стрептококкозы — инфекционные заболевания преимущественно молодняка, характеризующиеся тяжелыми септическими явлениями, воспалением органов дыхания, желудочно-кишечного тракта и суставов. У более взрослых особей обычно вызывают хронические заболевания.

Также во второй группе, где добавляли кормовой антибиотик было обнаружено присутствие патогенных грибов рода Candida их значение составляло $1,0*10^3$, в группе 3, где уровень дигидрокверцетина был 5г/т корма содержание данных грибов было ниже предела достоверного обнаружения. В группе 5 с самой высоко дозировкой дигидрокверцетина показатель содержания грибов рода Candida был $2,0*10^3$ клеток/г, что превышает контроль.

По результатам проведенного анализа методом qPCR образцов содержимого слепых отростков кишечника птиц можно сделать вывод, что

дигидрокверцетин положительно влияет на нормофлору птицы и оказывает негативное влияние на нежелательную микрофлору, стрептококки и грибы рода Candida.

Анализ чувствительности патогенной микрофлоры показал, что куркума и дигидрокверцетин обладают выраженной антимикробной активностью по отношению к грамположительной (S. aureus) бактериальной микрофлоре. Наибольшую активность проявляет композиция двух природных антиоксидантов: куркумы и дигидрокверцетина в отношении S. aureus и E. coli. По результатам проведенного анализа содержимого слепых отростков кишечника методом qPCR в лаборатории ООО «Биотроф», установлено, что добавки дигидрокверцетина положительно влияет на нормофлору птицы и оказывает негативное влияние на нежелательную микрофлору, стрептококки и грибы рода Candida. Содержание стрептококков в опытных группах с дигидрокверцетином на уровне 5 и 15 г/т было значительно ниже контроля (<п.д.о.; 2,0*10³ против 3,2*10³.), однако в группе, где использовали кормовой антибиотик, такого эффекта обнаружено не было, напротив, уровень стрептококков превышал контроль и составлял 5,0*10³ клеток/г.

3.3.1. Снижения перекисного окисления липидов в охлажденном и замороженном мясе птицы механической обвалки (Опыт 2)

Известно [26, 36, 81], что пищевая ценность мяса определяется химическим составом: содержанием и аминокислотным составом белков, жиров, углеводов, экстрактивных веществ, минералов и витаминов. В таблице 3.19 приведены данные по химическому и аминокислотному составу мышечной ткани, где показано, что содержание протеина в грудной мышце у петушков в 35-суточном возрасте в четвертой и пятой опытных групп было выше на 2,3% и 0,9%

соответственно. Содержание протеина в грудной мышце у курочек того же возраста во всех опытных группах было на уровне контроля.

Содержание жира в грудных мышцах петушков в четверной и пятой группах было незначительно ниже контроля, у курочек содержание жира во всех опытных группах было на уровне контроля. Содержание золы как у курочек, так и у петушков было на уровне контроля. Суммарное значение заменимых и незаменимых аминокислот у курочек во всех группах было на уровне контроля, а у петушков четвертой и пятой групп было выше на 0,2% и 1,4% соответственно.

Таблица 3.19 - Химический состав и содержание аминокислот в гомогенате грудных мышц цыплят - бройлеров петушки, (% на возд. сухое вещество) в 35 суточном возрасте (Опыт 2)

Показатель	Группа							
Показатель	1(к)	2	3	4	5	6		
грудные мышцы бройлеров петушков, n=3								
Влага	78,50	76,24	75,76	77,09	76,59	76.18		
Протеин	87,86	87,44	83,73	89,89	88,68	86,58		
Жир	4,50	6,01	8,99	3,50	3,86	6,53		
Зола	4,86	5,35	3,83	4,40	4,50	4,38		
∑ незам. амин.	32,79	32,28	33,96	32,87	33,08	32,06		
∑ замен. амин.	48,9	48,35	45,63	49,01	49,79	47,56		
Сумма аминокислот	81,69	80,63	79,59	81,88	82,87	79,62		
бедренные	е мышцы (бройлеро	в петушко	ов, n=3				
Влага	79,06	74,47	72,20	76,61	74,39	77,5		
Протеин	84,19	84,92	66,17	74,81	70,17	80,74		
Жир	8,98	9,78	28,92	14,55	22,58	11,54		
Зола	4,43	4,72	3,61	4,36	4,11	4,38		
∑ незам. амин.	30,6	31,4	23,64	28,63	26,57	30,27		
∑ замен. амин.	47,03	47,78	36,4	43,36	40,75	45,99		
Сумма аминокислот	77,63	79,18	60,04	71,99	67,32	76,26		

грудных мышц бройлеров курочек, n=3									
Влага	76,79	49,18	54,90	83,02	70,71	53,29			
Протеин	88,57	87,60	88,23	88,77	87,88	88,74			
Жир	4,17	4,84	3,70	4,07	5,02	5,02			
Зола	4,99	4,72	5,53	4,92	4,61	5,76			
∑ незам. амин.	33,42	32,69	33,3	33,28	32,62	32,02			
∑ замен. амин.	49,63	48,55	49,38	49,56	47,92	48,09			
Сумма аминокислот	83,05	81,24	82,68	82,84	80,54	80,11			
бедренны	е мышцы	бройлеро	в куроче	x, n=3					
Влага	79,18	90,90	86,37	51,63	81,65	87,63			
Протеин	84,01	84,05	62,97	69,16	63,92	69,59			
Жир	9,36	9,44	31,00	24,57	28,35	24,58			
Зола	4,97	3,26	5,25	3,97	3,72	3,93			
∑ незам. амин.	31,01	30,37	21,54	25,55	24,06	24,56			
∑ замен. амин.	47,58	48,31	32,41	37,92	36,37	37,76			
Сумма аминокислот	78,59	78,68	53,95	63,47	60,43	62,32			

Еще одним важным и значимым функциональным показателем свойств мяса является его влагосвязывающая (ВСС) и влагоудерживающая (ВУС) способность мышц. Результаты определения влагосвязывающей способности мяса птицы представлены на рисунке16.

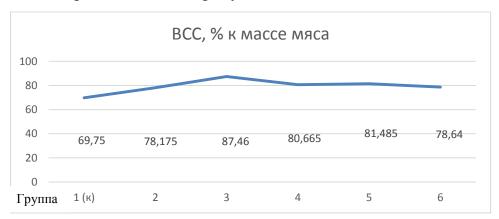


Рисунок 16 - Определение влагосвязывающей способности мяса птицы, % в 35 дневном возрасте (Опыт 2)

Повышение ВСС свидетельствует о том, что при переработке мясо меньше теряет влагу, что обеспечивает сочность, нежность продукта, а также увеличивает его выход. Эмульгирующая способность и стабильность эмульсии фарша характеризуют взаимодействие жира, белка и воды [36].

Уровень ВСС мяса в шестой группе, где добавляли 500 г/т корма куркуму, был выше контроля на 8,89%, что в очередной раз подтверждает положительное влияние данного антиоксиданта на ВСС мяса. Во второй группе, где добавляли кормовой антибиотик «МаксусС» в дозе 100 г/т корма, влагосвязывающая способность была выше контроля на 8,42%, а в третьей, четвертой и пятой группах, в которых использовали дигидрокверцетин, был также выше контроля на 17,71; 10,91; 11,73% соответственно.

В настоящее время в пищевой промышленности дигидрокверцетин использовали как антиоксидант, позволяющий увеличить срок годности продукта, и в качестве пищевой добавки для придания пищевому продукту терапевтических свойств при производстве кондитерских изделий, хлебобулочных изделий, сливочного масла, маргарина, кисломолочных продуктов и молока, а также безалкогольных напитков. Дигидрокверцетин предотвращает процесс способствует самоокисления продуктов питания, увеличению что продолжительности срока их хранения в 1,5 — 4 раза. Присутствие даже небольших его количеств в составе продукта способствует защите организма от вредного воздействия свободных радикалов.

В мясной промышленности использование дигидрокверцетина регламентируется ещё и Техническим регламентом Таможенного союза "Требования безопасности пищевых добавок, ароматизаторов и технологических вспомогательных средств" (ТР ТС 029/2012) и ГОСТ 33504-2015 Добавки пищевые. Дигидрокверцетин. Технические условия.

Так как дигидрокверцетин является разрешенным антиокислителем для пищевой промышленности, рассматривается целесообразность о разработки ГОСТов на продукцию с его использованием.

Полученные нами результаты подтверждают целесообразность применения этой добавки для сохранения органолептических показателей, стабилизации липидов мяса, подавления роста патогенной микрофлоры и для повышения биологической ценности продуктов.

Через 24 часа после убоя птицы, по завершению срока выращивания, были отобраны образцы грудной мышцы и мясо птицы механической обвалки, которые хранили в условиях бытовой холодильной камеры при температуре от -1 до 4 С на протяжении 10 суток и в условиях морозильной камеры при температуре -18С на протяжении 3-х месяцев. Контроль свежести производили на 1-е; 4-е; 10-е сутки хранения, а также 1 и 3 месяца хранения в замороженном виде.

На первые сутки хранения по органолептическим показателям внешний вид мяса птицы (грудная мышца) во всех группах имела корочку подсыхания бледно-розового цвета, консистенция была плотной и упругой, а при надавливании пальцем образующаяся ямка быстро выравнивалась, запах соответствовал свежему мясу, а бульон был прозрачный, ароматный, без образований хлопьев. Все эти показатели соответствовали свежему мясу. Дополнительно были проведены химические и микроскопические анализы свежести. Количество микроорганизмов в 1 поле зрения, во всех группах было до 10 микробных клеток, а распада мышечных волокон отсутствовал. Перекисное число липидов охлажденного мяса птицы механической обвалки во всех группах было на уровне 0,01% I, а кислотное число было ниже 4,5 мг КОН/г, что соответствовало показаниям свежего мяса.

На четвертые сутки хранения по органолептическим показателям внешний вид мяса птицы (грудная мышца) в контрольной и третий группах была местами увлажнена, слегка липкая, потемневшая с темно-красной окраской, по консистенции во всех группах мышечная ткань была менее плотная и менее упругая, а образующаяся при надавливании пальцем ямка выравнивалась медленно - в течение минуты. Запах был слегка кисловатый, что не удовлетворяла показателям свежести мяса и свидетельствовало о начале порчи продукта. Дополнительно были проведены химические и микроскопические анализы

свежести в этих группах, которые подтвердили начала процесса порчи мяса. В поле зрения микроскопа уже были микробные клетки, но их количество не превышало 30 единиц. Разницы между опытными группами и контролем не было обнаружено. Кислотное число мяса птицы механической обвалки в этих группах соответствовало показателям мяса сомнительной свежести и было больше 4,5 мгКОН/г, а перекисное число соответствовало сомнительной свежести и находилось в пределах от 0,013 до 0,016 % І. Вторая, четвертая, пятая и шестая группы имели показатели свежего мяса.

На десятые сутки хранения мяса птицы и мясо птицы механической обвалки во всех группах соответствовало не свежему мясу. Поскольку внешний вид грудных мышц во всех опытных группах был похожим: сильно подсохшая, покрытая слизью корочка подсыхания, консистенция была рыхлой, а запах был сильно кислый, затхлый. Несвежесть мяса и мяса птицы механической обвалки была также подтверждена химическими и микроскопическими анализами свежести. На десятые сутки хранения образцов, в мазках-отпечатках было множество микробных клеток в поле зрения микроскопа - более 30 микробных клеток с преобладанием палочковидных форм, наблюдался значительный распад мышечной ткани, почти полное исчезновение ядер и исчерченности мышечных волокон. Разницы между группами так же не было. Кислотное число мяса птицы механической обвалки во всех группах соответствовало показателям мяса сомнительной свежести и не превышали 9,0 мгКОН/г, кроме третий группы, где это значение было 10,80 мгКОН/г (не свежее мясо), а перекисное число третий и пятой групп соответствовало не свежему мясу (более 0,04 % I) и составляло 0,119 и 0,042 % І соответственно, в остальных группах перекисное число находилось в пределах от 0,02 до 0,032 % І, что соответствовало показателям мяса сомнительной свежести.

На четвертый месяц хранения (рекомендуемые сроки годности замороженного мяса кур со дня выработки, при температуре воздуха в холодильной камере, обеспечивающей поддержание температуры в толще продукта: - не выше минус 12°C для частей тушек - не более 1 мес.) для

размороженного мяса - цвет темно-розовый, с поверхности разреза стекает слегка мутноватый мясной сок, консистенция рыхловатая, запах слегка кислый, что соответствует мясу сомнительной свежести, о чем свидетельствуют показатели кислотного числа и перекисного числа. Так кислотное число во всех опытных группах соответствует свежему мясу и не превышает 4,5 мгКОН/г, однако в контрольной группе этот показатель немного выше и равен 4,59 мгКОН/г, перекисное число – мясу сомнительной свежести, однако в 3, 4, 5 и 6 группах этот показатель значительно ниже контрольных значений и составляет 0,015; 0,013; 0,013; 0,014 против 0,052 %І в контроле и против 0,046%І в группе с использованием кормового антибиотика. Анализ свежести мяса проводили согласно ГОСТ 23392-2016.

В литературных источниках существуют данные о влиянии на окисление липидов других природных антиоксидантов, биофлаваноидов, таких как орегано, душица, шалфей, розмарин и т.д. которые не противоречат нашим данным.

Выращивали птицу до 35 дневного возраста, далее, после убоя, были отобраны образцы грудной мышцы от каждой исследуемой группы для определения количества бактерий и степени распада мышечной ткани путем микроскопирования окрашенных по Граму мазков-отпечатков. Отбор проб и подготовку их к испытаниям проводят по ГОСТ Р 53597. Пробы хранили в холодильнике при температуре 2 °C до полного завершения испытания (10 дней).

Поверхность исследуемых мышц стерилизовали раскаленным шпателем, вырезали стерильными ножницами кусочки размером примерно 2,0x1,5x2,5 см. Поверхностями срезов вырезанные кусочки прикладывали к предметному стеклу (по три отпечатка на двух предметных стеклах). Полученные препараты высушивали на воздухе, фиксировали и окрашивали по Граму в соответствии с ГОСТ 21237.

В процессе холодильного хранения мяса происходят неодинаковые изменения количественного и группового состава микрофлоры, размножение которой может вызвать порчу продукта. Микрофлора мяса, поступающего на хранение в камеры охлаждения, разнообразна по составу и обычно представлена

мезофилами, термофилами и психрофилами, то есть микроорганизмами, имеющими неодинаковые температурные пределы роста. К концу охлаждения в глубоких слоях мяса температура должна достигать 0-4°C. Следовательно, на процессе хранения могут развиваться охлажденном мясе В только микроорганизмы, которые имеют наиболее низкие температурные пределы роста и размножения, т. е. психрофильные. Термофильные и большинство мезофильных микроорганизмов, которые не развиваются при температурах, близких к 0°C, после охлаждения мяса полностью приостанавливают свою жизнедеятельность, переходя в анабиоз. В процессе последующего хранения продукта эти микроорганизмы постепенно отмирают и, следовательно, их уменьшается. Но некоторые патогенные и токсигенные бактерии из группы мезофиллов (сальмонеллы, токсигенные стафилококки и др.) длительное время сохраняют жизнеспособность при низких температурах и не отмирают при хранении охлажденного мяса.

Согласно Техническому регламенту Евразийского экономического союза "О безопасности мяса птицы и продукции его переработки" (ТР ЕАЭС 051/2021) срок хранения охлажденных частей куриного мяса, а именно грудной мышцы цыплят-бройлеров при температуре от 0 до 2С без использования упаковки составляет 2 суток. Наличие в корме для птицы природного антиоксиданта дигидрокверцетина в дозировке 10 г/т корма или куркумина в дозировке 0,5 кг/т корма может продлить срок хранения, охлажденного мяса до 4 суток (если другие показатели в норме: прозрачный бульон без хлопьев, Ph в норме 5,5-5,6).

Из вышеизложенного можно сделать вывод, что на 4-е сутки мышечная ткань еще пригодна для употребления в пищу, т.к. соответствует показателям свежего мяса. Группа 2, с использованием кормового антибиотика, также пригодна для использования в пищу (антибиотик исключали из рациона за 2 недели до убоя птицы). Группы 4 и 6 являются лучшими, по результатам опыта, в сравнении с контрольной группой и с группой с кормовым антибиотиком, то есть природные антиоксиданты сдерживали рост патогенной микрофлоры не хуже кормового антибиотика. На 10-е сутки хранения показатели свежести мышечной

ткани в условиях холодильника при температуре 2 С во всех опытных группах не соответствовали нормативным значениям.

Таблица 3.20 - Изменение перекисного числа, % I и кислотного числа, мгКОН/г мяса цыплят-бройлеров при хранении в охлажденном и замороженном виде.

\sim	7
СППЫТ	/
(Onbit	,

Показатель	Группа								
Показатель	1 (ĸ)	2	3	4	5	6			
Охлажденное мясо птицы механической обвалки									
Кислотное число									
мясо, мгКОН/г:									
1 сут. хранения	2,40	2,52	2,62	2,40	2,34	2,49			
4 сут. хранения	3,64	3,72	4,90	2,58	2,82	2,93			
10 сут. хранения	7,10	7,80	10,80	5,84	5,84	5,62			
Перекисное число									
мясо, % І:									
1 сут. хранения	0,014	0,014	0,013	0,014	0,013	0,013			
4 сут. хранения	0,014	0,016	0,013	0,016	0,015	0,013			
10 сут. хранения	0,032	0,020	0,119	0,030	0,042	0,021			
Зам	ороженн	ое мясо птиц	ы механич	неской обв	алки				
Кислотное число									
мясо, мгКОН/г:									
1 мес. хранения	-	-	-	-	-	-			
4 мес. хранения	4,59	4,13	3,75	2,83	3,31	2,38			
Перекисное число									
мясо, % I:									
1 мес. хранения	-	-	-	-	-	-			
4 мес. хранения	0,052	0,046	0,015	0,013	0,013	0,014			

Полученные нами результаты подтверждают данные наших предварительных исследований, на основании которых и были выбраны исследуемые в данном опыте уровни ввода препарата [19] и не расходятся с других исследователей, которые показали, результатами что включение дигидрокверцитина способствует улучшению продуктивности бройлеров за счет увеличения мышечной массы. Добавление в рацион птиц антиоксидантной добавки «Дигидрокверцетин» даже в высоких дозировках не приводит к мышечной дозировки нарушению структуры ткани. более высокие дигидрокверцетина не оказывают негативного влияние на состояние птицы [31, 115].

Дополнительно определения ДЛЯ чувствительности патогенной микрофлоры кормовым добавкам было проведено исследование микробиологической лаборатории ООО "НВЦ Агроветзащита С-П." (лицензия на области осуществление использования возбудителей деятельности инфекционных заболеваний человека и животных III-IV степени потенциальной опасности № 50.99.08.001.Л.000012.05.13 от 29.05.2013 г.) по определению величин МПК (минимальной подавляющей концентрации) трех образцов кормовых добавок на основе природных антиоксидантов куркумы, дигидрокверцетина и композиции на их основе.

результатам испытаний установлено, что исследуемые образцы По обладают антимикробной выраженной активностью ПО отношению грамположительной (S. aureus) бактериальной микрофлоре. Наибольшую активность проявляет в отношении S. aureus и E. coli образец № 3 – композиция, содержащая 10 г/т дигидрокверцетина и 500 г/т куркумы. Протокол испытаний приведен в приложении А9.

Таким образом установлено, что включение дигидрокверцетина в комбикорма для цыплят бройлеров в дозе 5, 10 и 15 г/т корма способствует улучшению зоотехнических показателей, продляет срок хранения охлажденного и замороженного мяса птицы механической обвалки, улучшает липидный обмен в организме бройлеров, способствует снижению ожиренности тушки, что позволяет

обеспечить высокое качество мяса для производства детского и диетического питания. Антисептические свойства дигидрокверцетина позволяют получать продукцию без использования кормовых антибиотиков, что важно для повышения качества и биологической ценности мяса.

3.4 Биологическое и продуктивное действие совместного применения антиоксидантов на основе куркумы и дигидрокверцетина в кормлении цыплят бройлеров (Опыт 3).

С целью изучения совместного применения лучших дозировок дигидрокверцетина и куркумы (по результатам предыдущих опытов) для получения синергического эффекта, в том числе в составе композиции витамина Е, в заключительный период выращивания, нами проведены зоотехнические и физиологические исследования на бройлерах и дана ветеринарно-санитарная оценка качеству полученной продукции.

3.4.1. Продуктивность;

В результате исследования установлено (таблица 3.21), что в 7-суточном возрасте живая масса цыплят второй, четвертой, пятой, шестой и седьмой опытных групп была выше контроля на 1,8%, 3,7%, 2,8% 2,2% и 1,9% соответственно. К 14-суточному возрасту вторая и пятая опытные группы по живой массе превосходили контроль на 3,4% и 1,9%, соответственно. Продуктивность бройлеров четвертой группы, получавших композицию двух изучаемых антиоксидантных препаратов, находилась на уровне контроля. На ранних сроках выращивания бройлеров большую скорость роста обеспечивало

применение 500 г/т куркумы, в том числе и за счет ее лучшего распределения в структуре рациона.

Таблица 3.21 - Продуктивность цыплят-бройлеров кросса «Росс-308», получавших комбикорма с включением различных сочетаний антиоксидантов, $(n=35) \ M+m \ (Oпыт \ 3).$

Показатон	Группа							
Показатель	1	2	3	4	5	6	7	
Сохранность поголовья, %	100	100	100	100	100	97,14	100	
Живая масса, г в								
возрасте, суток:								
Суточные:	39,0	39,0	39,0	39,0	39,0	39,0	39,0	
	$\pm 0,34$	<u>+</u> 0,41	±0,39	±0,34	±0,22	±0,58	<u>+</u> 0,41	
7:	168,9	172,0	165,4	175,1	173,	172,	172,06	
	±2,4	±4,1	±2,0	±2,5	±2,7 a	±3,0 a	±2,57	
14:	444,4	456,3	435,1	445,2	449,8	441,5	466,66	
	±8,0	±8,1	±9,2	±9,9	±8,7	±8,7	±7,65 a	
21:	812,7	886,3	841,9	876,1	900,4	879,4	837,34	
	±14,0	±14,9 в	±22,5	±21,1 г	±19,9 в	±20,0 б	±16,23	
35(в среднем):	1945,0	2060,75	2019,4	2029,7	2037,8	1997,4	2009,075	
в том числе:								
петушков	2096,3	2228,5	2276,5	2177,5	2212,2	2149,5	2183,75	
	±35,3	±49,4 a	±36,0 б	±45,4	±33,9	±38,0	±29,38	
курочек	1793,7	1893,0	1762,3	1881,9	1863,4	1845,3	1834,40	

	±37,4	±29,5 a	±47,1	±35,5	±39,6	±26,7	±26,64
Затраты корма	3,131	3,271	3,267	3,2197	3,264	3,249	3,1996
на 1 гол., кг							
Затраты корма							
на 1 кг	1,6429	1,6179	1,650	1,6174	1,6328	1,6588	1,6241
прироста живой	1,0429	1,0179	1,030	1,01/4	1,0326	1,0300	1,0241
массы, кг							
Среднесуточный							
прирост живой	52 044	56 160	55 O11	55 207	55 522	511	54 724
массы, г (35	52,944	56,160	55,011	55,297	55,522	54,4	54,724
дней)							
Убойный выход,	84.405	85,201	82,985	84,925	81,385	84,555	83,635
%, В среднем	84,405	63,201	02,903	04,723	01,303	04,333	05,055
% выхода гр.	26,4	24,5	25,1	25,4	27,6	25,0	24,67
Мышц .	20 ,4	24,3	23,1	23, 4	27,0	23,0	24,07
ЕИП, балл	322,26	347,12	333,48	341,89	340,04	318,57	336,95

Достоверность различий: $a - p \le 0.05$; $6 - p \le 0.01$ в- $p \le 0.001$

К 21-суточному возрасту бройлеры второй и пятой групп, получавшие добавки куркумы по живой массе превосходили контрольных аналогов на 9% и 10,8%. Цыплята третий и шестой группы, получавшие 10 г/т дигидрокверцетина по живой массе превосходили контроль на 3,6 и 8,2%. Бройлеры четвертой и седьмой групп, получавшие куркуму в сочетании с дигидрокверцетином по этому показателю были выше контрольных аналогов на 7,8 и 3% соответственно.

К концу выращивания лучшая продуктивность отмечена у цыплят второй и пятой групп, получавших добавки куркумы и куркуму с добавлением витамина Е. Дополнительное включение витамина Е, с 22-го суточного возраста, не привело к значительному улучшению продуктивности бройлеров пятой группы в сравнении со второй группой. Живая масса петушков этих групп была сопоставима и достоверно превышала контроль на 5,95% и 4,77%.

По затратам корма на 1 кг прироста живой массы, убойному выходу мяса и % выхода грудных мышц значительных различий между группами не получены. Такая наблюдалась и тенденция при включении в комбикорма с дигидрокверцетином витамина Е. Живая масса цыплят третий и шестой опытных групп к концу выращивания была близкой и находилась на уровне 2019,4 и 1997,4 против 1945,0 в контроле. Таким образом, применение витамина Е с 22-суточного конца выращивания не оказало существенного полученные зоотехнические результаты выращивания цыплят. Оценивая совместное использование композиции антиоксидантов нами установлено, что включение 10 г/т дигидрокверцетина и 500 г/т корма куркумы обеспечило увеличение живой массы цыплят четвертой опытной группы к 35-суточному возрасту на 4,35% в сравнении с контролем и 0,51% в сравнении с живой массой цыплят третий группы, получавших только дигидрокверцетин. Таким образом, ожидаемый нами синергический эффект от совместного применения данных препаратов присутствует, но не значительный.

В целом, нами отмечено улучшение конверсии корма в сравнении с контролем у цыплят всех опытных групп. Затраты корма на 1 кг прироста живой массы у цыплят второй, четвертой, пятой и седьмой опытных групп были ниже показателей контрольной группы и составляли 1,6179; 1,6174; 1,6328; 1,6241 кг на 1 кг прироста живой массы.

Оценка эффективности выращивания бройлеров по комплексному показателю - Европейский индекс продуктивности, показала, что большая эффективность получена у бройлеров второй и четвертой опытной группы.

Анализ результатов анатомической разделки цыплят-бройлеров, по окончанию срока выращивания, позволил зафиксировать увеличенный убойный выход потрошеных тушек в опытных группах 2, 4 и 6 относительно контроля на 0,796% 0,52% и 0,15% соответственно относительно контроля.

3.4.2. Переваримость и использование питательных веществ корма, интенсивность обменных процессов в организме птицы;

Данные физиологического опыта, представленные в таблице 3.22, согласуются с полученными зоотехническими результатами. Увеличение живой массы цыплят-бройлеров во всех опытных группах связано с более интенсивной скоростью протекания обменных процессов в организме птицы. Интенсивность обменных процессов подтверждена данными биохимических и гематологических показателей крови, химическим и витаминным составом печени, анализом минерализации большеберцовых костей, а также гистологическими исследованиями печени.

Таблица 3.22 — Основные показатели переваримости и использования питательных веществ корма (%) цыплятами — бройлерами в возрасте 30-33 суток, $M\pm m, n=3$ (Опыт 3).

Показатель				Группа			
Hokusuloni	1(к)	2	3	4	5	6	7
Переваримость:							
протеина	93,79	94,25	93,04	94,66	94,16	94,47	94,29
сухого вещества	43,16	48,86	39,42	47,16	42,08	46,28	45,92
корма	00.45	00.22	0 6 70	00.5	00.40	00.10	00.6
жира	89,45	88,33	86,58	88,5	88,48	88,18	90,6
клетчатки	21,91	18,2	13,05	25,74	24,47	22,0	18,52
Использование:							
азота	49,0	48,8	48,89	49,15	49,06	49,12	49,09
кальция	53,25	59,14	43,49	59,58	50,44	46,71	55,54
фосфора	37,22	47,25	44,76	47,59	38,7	50,0	47,89
Доступность:							
лизина	92,65	93,69	93,43	94,51	92,49	94,19	93,42
метионина	94,0	94,8	94,43	95,0	94,73	94,44	94,59

Установлено, что цыплята опытных групп переваривали жир на уровне аналогов из контрольной группы. Доступность жира во всех группах была достаточно высокой. Вопросы обмена липидов в организме птицы имеют важное значение, поскольку липиды являются энергоёмким субстратом — при окислении 1,0 г жира образуется 9,3 ккал энергии, что в 2,2 раза больше, чем при окислении белков и углеводов. Жиры мобилизуют кальций из внутриклеточного депо, регулируют многие биологические процессы в крови, являются стимуляторами пищеварительной функции поджелудочной железы и повышают уровень липазы в панкреатическом соке. В организме нейтральные жиры находятся в форме запасного и протоплазматического жира, в состав которого входят фосфолипиды и липопротеиды. При этом содержание жира в печени было меньше контроля на 0,46%; 2%; 4,15%; 1,09%; 4,42% и 6,36% соответственно (таблица 3.25).

Биохимические и гематологические показатели крови также подтверждают интенсивность жирового обмена и отсутствие патологических изменений в печени. Так показатели холестерина, АЛТ и АСТ находятся в пределах своей физиологической нормы и приведены в таблице 3.23.

Таблица 3.23 - Биохимические и гематологические показатели крови у 33суточных цыплят-бройлеров, (n=3)

Показатель	Нормы для		Гр	уппы	
Hokusutenb	птицы	1(ĸ)	2	4	3
Белок общий, г/л	30-60 г/л.	35,2±0,4	36,9±0,5	34,4±1,2	37,8±0,6
Холестерин, ммоль/л	1,5-4,6 ммоль/л	2,0±0,2	2,3±0,2	2,7±0,0	2,6±0,1
АЛТ, ед/л	12-18	12,1±0,2	17.8 ± 1.0 ; a	17,5±0,3; 6	18,0±0,8; б
АСТ, ед/л	до 330 Ед/л	70,1±1,9	113,1±5,1; Γ	105,5±1,8; 6	109,3±4,7; г
Лейкоциты WBC*10 ⁹ /л	20-40 wbc*10 9/л	43,17±6,8	41,61±0,4	43,50±0,3	41,69±7,6
Эритроциты, RBC*10 ¹² /л	2,7- 4,5RBC*10 ¹² /л	2,8±0,4	2,8±0,0 ; 6	3,2±0,2	3,5±0,1; в

Гемоглобин, г/л			346,0±0	377,5±0,4	376,5±14,5	426,0±10,6
Гематокрит, %	на	уровне	39,9±5,6	41,1±0,3	45,7±2,7	50,4±2,1
Tematokpiii, 70	35,1%		37,723,0	11,120,5	13,7-2,7	30,122,1
Тромбоциты,	30-100	plt*10	22,0±8,5	8,0±0,7	13,0±4,9	8,0±1,4
тромооциты,	9/л		22,0±0,5	0,0±0,7	15,044,9	0,041,4

Достоверность различий: а - $p \le 0.05$; б- $p \le 0.01$; - $B \le 0.1$; r- $p \le 0.02$

Оценивая влияние добавок различных сочетаний антиоксидантов на переваримость и доступность питательных веществ корма необходимо отметить, что переваримость протеина во всех группах была на уровне контрольных показателей и были достаточно высокие – более 93%. Что свидетельствует о более интенсивном белковом обмене. Это подтверждено гематологическими показателями, химическим и витаминным составом печени, а также предыдущими исследованиями. Сухое вещество и клетчатка корма лучше усваивались в 4 и 6 группах на 4%; 3,12% и 3,83%; 0,09%.

Так общий белок крови в опытных группах 2, и 3 увеличивался по сравнению с контролем и соответствовал нормативным показателям (30,0-60,0 г/л), что свидетельствует о более высоком уровне биосинтеза белка и положительном влиянии на белковый обмен, что также подтверждено данными химического состава печени, так содержание протеина в печени у 4,5 и 6 групп (таблица 3.25) было выше контроля на 2,88% 1,45% и 1,89%, в остальных группах этот показатель был на уровне контроля. Содержание витамина А в печени бройлеров во всех опытных группах превышало контрольные значения, однако выше всех это значение было в 3 группе и составляло 119,22 мкг/г. Аналогичная закономерность наблюдалась и по накоплению в печени витамина В2 и каротиноидов. Можно предположить, поскольку витамины А, Е, В и каротиноиды влияют на рост птицы, а они достоверно повышались в печени, то более высокий уровень их содержания в печени бройлеров опытных групп указывает на лучшее усвоение биологически активных веществ из корма, снижение образования свободных радикалов в организме птицы [17, 20, 21].

Использование кальция, фосфора цыплятами второй, четвертой и седьмой опытных групп было лучше контроля на 5,89%; 6,33%; 2,29% и 10,03%; 10,37%; 10,67% соответственно. Анализ содержания кальция, фосфора, в костяке бройлеров представлен в таблице 3.24, подтверждает данные, полученные в физиологическом опыта, где показано, что содержание кальция во всех опытных группах было выше контрольных значений. Можно сделать вывод, что добавки антиоксидантов положительно повлияли на минерализацию большеберцовой кости 5-недельных бройлеров и на минеральный обмен в организме птицы, что также подтверждено гематологическими показателями.

Таблица 3.24. – Содержание золы, кальция, фосфора (%) в большеберцовой кости цыплят-бройлеров кросса «Росс 308» в возрасте 35 суток в расчете на воздушное сухое в-во, n=6 (Опыт 3).

Показатель		Группа						
	1 (ĸ)	2	3	4	5	6	7	
Зола	48,36	48,00	50,25	48,06	48,84	48,56	51,09	
Ca	18,19	18,24	18,86	18,54	18,00	18,74	19,10	
P	9,02	8,84	8,86	8,71	9,33	8,80	9,18	

Таблица 3.25- Химический состав (%) и содержание витаминов и каротиноидов (мкг/г) в печени цыплят-бройлеров в возрасте 35 суток, n=6 (Опыт 3).

Показатель	Группа						
	1 (K) 2 3 4 5 6						7
влага	73,89	73,33	74,21	73,96	73,54	74,04	74,39
протеин	69,34	66,19	69,62	72,22	70,79	71,23	69,19
жир	16,37	15,91	14,37	12,22	15,28	11,95	14,01
зола	4,66	4,37	4,51	4,71	4,76	4,76	4,37

Витамины:							
Е	23,48	20,24	21,72	14,13	24,52	21,78	21,47
A	74,16	82,35	119,22	106,56	81,61	97,23	91,21
B_2	9,86	10,12	11,15	11,32	10,68	10,72	10,90
каротиноиды	0,87	0,98	0,92	1,21	1,24	0,99	1,35

Полученные в процессе проведения физиологического опыта результаты подтверждают позитивное влияние куркумы в дозировке 500 г/т корма и дигидрокверцетина в дозировке 10 г/т корма на переваримость и усвоение питательных веществ корма. Безопасность использования указанных выше антиоксидантов была подтверждена гистологическими исследованиями печени, поскольку она активно реагирует на несбалансированное кормление и наличие токсичных веществ.

3.4.3. Гистологическое исследование функционального состояния печени цыплят бройлеров

При исследовании гистоморфологической структуры печеночной ткани цыплят-бройлеров подопытных групп (рисунки 17, 18, 19), в целом, отмечена типичность ее строения В печени цыплят первой и второй групп междольковая соединительная ткань слабо развита, в связи с чем, отсутствует выраженная дольчатость печени, что характерно для птиц (рис.17).

Гепатоциты, составляющие основу паренхимы, образуют радиально направленные балки с сохранением гистоархитектоники. Ядра гепатоцитов крупные, окрашены базофильно, цитоплазма — умеренно оксиофильна. Синусоидные капилляры расположены между печеночными клетками. Хорошо определяется периваскулярное пространство с мелкоочаговыми лимфоидными

скоплениями, более выраженными в первой группе, что может быть следствием сильного кровенаполнения междольковой вены.

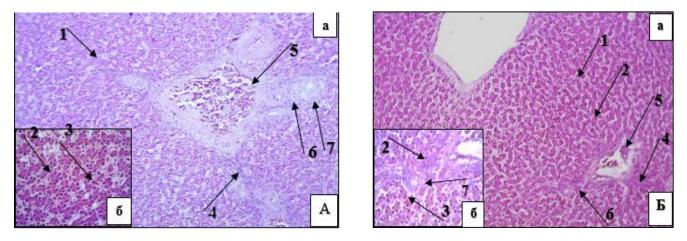


Рисунок 17 - Фрагменты печени цыплят-бройлеров первой (контрольной) и второй подопытых групп в возрасте 35 суток. Стрелками обозначены:1-междольковая соединительная ткань; 2 - гепатоциты; 3 - синусоидные капилляры, 4 - лимфоидные скопления; 5 - кровенаполненность междольковой вены; 6-триада печени; 7 - междольковый желчный проток. Окраска гемотоксилином Джилла и водным эозином. Увеличение х100 (а) и х400 (б).

Незначительное количество мелкоклеточных элементов в периваскулярном пространстве в печени цыплят второй группы, существенного влияния на деятельность печени не оказывает. Междольковые сосуды и желчный проток триады типичного строения.

При изучении гистологических препаратов, изготовленных из печени цыплят-бройлеров третьей группы, отмечались сходные показатели с гистопрепаратами, полученными от цыплят четвертой группы.

В печени бройлеров четвертой подопытной группы видны гепатоциты с крупными, базофильно окрашенными, ядрами.

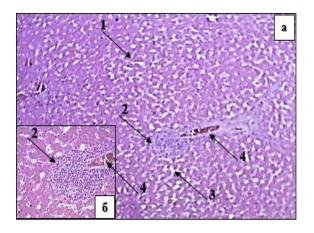


Рисунок 18 - Фрагменты печени цыплят-бройлеров четвертой группы в возрасте 35-и суток. Стрелками обозначены: 1 - гепатоциты; 2 — лимфо-моноцитарный инфильтрат; 3 — интерцеллюлярный отек печеночной ткани; 4 — эритроциты, заполняющие просвет вен. Окраска гемотоксилином Джилла и водным эозином. Увеличение х100 (а) и х400 (б).

Визуализация печеночных долек отсутствует. В периваскулярном рядом с междольковой веной, пространстве, видны очаги воспаления, представленные инфильтратами с большим количеством мелкоклеточных и крупноклеточных элементов, среди которых преобладают моноциты. Разная степень их инфильтрации вызывает интерцеллюлярный отек с нарушением гомеостаза внутренней среды. Эритроциты заполняют просвет вен, но в пределах сосудов.

В строении печеночной ткани цыплят-бройлеров пятой группы существенных изменений нет.

При изучении микропрепаратов, изготовленных из печени бройлеров шестой и седьмой групп, отмечалась сходная, в пределах нормы, морфоструктура ткани.

Гепатоциты правильной, полигональной формы, с крупными гиперхроматиновыми ядрами и четко определяемой балочной структурой. Междольковая волокнистая соединительная ткань слабо выражена, дольчатое строение печени не визуализируется, что является нормой для птиц.

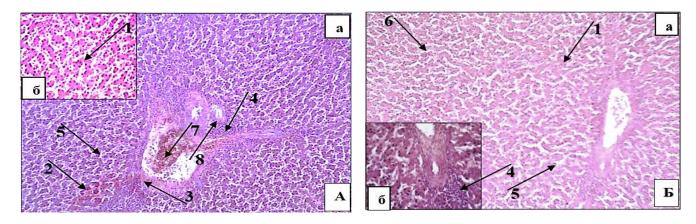


Рисунок 19 - Фрагменты печени цыплят-бройлеров первой (контрольной) и второй подопытых групп в возрасте 35-и суток. Стрелками обозначены:1-гепатоциты; 2 — синусоидные капилляры; 3 — область адвентиции междольковой вены; 4 — лимфоидные инфильтраты, 5 — интерстициальный отек; 6 — гиперхроматиновые ядра; 7- междольковые вены; 8 - междольковый желчный проток. Окраска гемотоксилином Джилла и водным эозином. Увеличение х100 (а) и х400 (б).

Рядом с синусоидными капиллярами с эритроцитами, а также, в области адвентиции междольковой вены и в периваскулярном пространстве, в печени цыплят шестой группы в сравнении с седьмой, обнаружены более обширные лимфоидные инфильтраты, вызывающие интерцеллюлярный отек печеночной ткани. Междольковые вены умеренно кровенаполнены. Клетки междолькового желчного протока имеют правильную кубическую форму, в просвете обнаружены остатки желчи.

Таким образом, при изучении гистологических препаратов, изготовленных из печени цыплят-бройлеров контрольной и опытных групп, в целом отмечена типичность строения печеночной ткани, однако, в некоторых группах есть, разной степени, изменения. Так, в печени опытных цыплят **третьей и четвертой** групп, в сравнении с печенью бройлеров других групп, в периваскулярном пространстве видны крупные, локальные очаги воспаления с разной степенью лимфомоноцитарной инфильтрации, вызывающей интерцеллюлярный отек ткани. В

печени цыплят-бройлеров **первой, шестой и седьмой** групп, в периваскулярном пространстве, отмечается наличие, в шестой группе более, а в первой и седьмой менее обширных лимфоидных инфильтратов, вызывающих разной степени отек печеночной ткани. В печени бройлеров **второй и пятой** групп гистоморфологических изменений не обнаружено.

Предыдущие исследования показали, что альтернатива антибиотикам существует, она обширна и разнообразна, и представлена различными классами соединений такими как: флаваноиды, про- и пребиотики, подкислители и т.д. и все они оказывают положительное влияние на различные производственные параметры, улучшая иммунологический профиль и морфологию кишечника птицы. Добавление куркумы как отдельно, так и совместно с дигидрокверцетином приводит к улучшению продуктивных показателей, снижению перекисного окислению липидов в корме и мясе птицы, повышению усвояемости питательных веществ корма, а также позволяет снизить смертность и нормализовать микрофлору кишечника. Кроме того, было отмечено положительное влияние приготовленного мяса на органолептические характеристики.

Анализ научных работ по использованию фитобиотиков в животноводстве птицеводстве показывает, природные антиоксиданты ЧТО являются эффективной заменой стимуляторам роста и кормовым антибиотикам, а также, подходят для снижения негативных последствий теплового стресса оксидативного стресса.

Доказано, эффективно что антиоксидантные препараты ΜΟΓΥΤ предотвращать окислительные процессы в организме птицы и в кормах. Положительное влияние стабилизированных антиоксидантами кормов продуктивность и физиологическое состояние цыплят-бройлеров может быть обусловлено не только лучшей сохранностью питательных веществ (протеины и жиры) и БАВ (витамины и аминокислоты) в кормах и поступлением их в большем количестве в организм, но и влиянием самих антиоксидантов на состояние птицы и переваривание этих веществ в процессах пищеварения и метаболизма [17, 20, 21].

В то же время необходимы дальнейшие исследования по изучению влияния природных фитобиотиков, чтобы определить и их негативное влияние на организм птицы и снизить его, а биофлаваноиды использовать с максимальной пользой.

В различных странах мира использование куркумы, чеснока и орегано в качестве иммуностимуляторов и стимуляторов роста для замены нецелесообразного применения противомикробных препаратов с целью заботы и сохранения здоровья человека широко распространено. Так, Flores Delgado и соавтарами сделан вывод, что добавление орегано, куркумы и чеснока в рацион цыплят-бройлеров помогает стимулировать иммунную систему, способствует росту и представляет собой безопасную и здоровую альтернативу питанию для человека, животных и птицы [93].

3.4.4 Пищевая и биологическая ценность мяса птицы механической обвалки. Ветеринарно-санитарный осмотр тушек цыплят бройлеров и их органолептическая оценка

Как было описано в опыте 1 и опыте 2 при изучении химического и аминокислотного состава грудных и бедренных мышц курочек и петушков было выявлено, что антиоксиданты увеличивали суммарное значение аминокислот. Эти данные свидетельствуют о том, что мясо бройлеров имели более насыщенный аминокислотами состав, а значит их вкусовых и качественные характеристики выше показателей контрольной группы.

Органолептическая оценка мяса и бульона бройлеров была проведена на лучших группах по зоотехническим показателям, а именно вторая группа, где в рацион цыплятам-бройлерам добавляли 0,5 кг/т корма куркумы и четвертая группа, где добавляли 0,5кг/т куркумы совместно с дигидрокверцетином в дозе 10г/т корма. Отрицательного влияния добавок на вкусовые и другие показатели

выявлено не было. Дегустационная оценка была проведена пробой варки, а оценка была произведена по пятибалльной шкале (таблица 3.26).

Таблица 3.26 - Органолептическая оценка мяса и бульона бройлеров, средний балл. М±m, n=3 (Опыт 3)

Показатели		Группа	
	1к	2	4
	Грудные мі	ышцы	
Аромат	4,8±0,2	5,0±0	4,8±0,2
Вкус	4,5±0,2	5,0±0 a	4,8±0,2
Нежность (жесткость)	4,7±02	4,7±0,2	4,8±0,2
В среднем	4,7±0,1	4,9±0,1	4,7±0,1
	Бедренные м	иышцы	
Аромат	4,3±0,2	4,8±0,2	4,5±0,2
Вкус	4,5±0,2	5,0±0 a	4,8±0,2
Нежность (жесткость)	4,5±0,2	5,0±0 a	4,8±0,2
В среднем	4,4±0,1	4,9±0,1 в	4,8±0,1 a
	Бульог	Н	
Аромат	4,5±0,2	5,0±0 a	4,8±0,2
Вкус	4,8±0,2	5,0±0	5,0±0
В среднем	4,7±0,1	5,0±0 a	4,9±0,1

Достоверность различий: а - $p \le 0.05$; б- $p \le 0.01$ в- $p \le 0.001$

По вкусовым показателям грудные мышцы цыплят-бройлеров групп 2 превосходили показатели грудных мышц цыплят контрольной и 4 группы и составляли 4,9 балла ((P<X) St=5 Достоверность 0,10) против 4,7. Самый высокий общий балл за вкусовые качества бедренных мышц получила группа 2 с показателем 4,9 ((P<X) St=5 Достоверность 0,001) балла против 4,4 баллов контрольной группы и 4,8 баллов ((P<X) St=5 Достоверность 0,05) в 4 опытной группы. Цвет бульона опытной группы 2 был окрашен в желтоватый цвет, благодаря куркумину, что согласуется с данными исследований Раг Segóvia Camila Michel проведенными в 2020 году в Эквадоре. В своем исследовании

авторы оценивали пигментацию бройлеров от использования различных доз куркумы, как вариант замены искусственных красителей. Они подтвердили прямую связь с интенсивностью окраски туки бройлера от уровня ввода куркумы в рацион [131].

Так же на рисунке 3.20 видно, что жировое кольцо в колбах 1 и 2 одинаковое, а вот в колбе 3 оно практически незаметно, что в очередной раз подтверждает действие дигидрокверцетина на содержание жира в тушке.

При оценки вкусовых качеств бульона, максимальное значение было у образца 2 группы и составляло 5,0 балла ((P<X) St=5 Достоверность 0,05) против 4,9 балла в 4 группе и 4,7 балла в контрольной.

Рисунок 20 – Окраска бульона при проведении дегустационной оценки

3.4.5 Влияние антиоксидантов на продолжительность срока хранения охлажденного и замороженного мяса цыплят-бройлеров

Через 24 часа после убоя птицы, по завершению срока выращивания, были отобраны образцы грудной мышцы и мясо птицы механической обвалки, которые хранили в условиях бытовой холодильной камеры при температуре от -1 до 4 С на протяжении 10 суток и в условиях морозильной камеры при температуре -18С на протяжении 4-х месяцев. Контроль свежести производили на 1-е; 4-е;7-е и 10-е сутки хранения, а также 4 месяца хранения в замороженном виде.

На первые сутки хранения по органолептическим показателям внешний вид мяса птицы (грудная мышца) во всех группах имела корочку подсыхания бледно-розового цвета, консистенция была плотной и упругой, а при надавливании пальцем образующаяся ямка быстро выравнивалась, запах соответствовал свежему мясу, а бульон был прозрачный, ароматный, без образований хлопьев. Все эти показатели соответствовали свежему мясу. Дополнительно были проведены химические и микроскопические анализы свежести. Количество микроорганизмов в 1 поле зрения, во всех группах было до 10 микробных клеток, а распада мышечных волокон отсутствовал. Перекисное число липидов охлажденного мяса птицы механической обвалки во всех группах было на уровне 0,01% I, а кислотное число было ниже 4,5 мг КОН/г, что соответствовало показаниям свежего мяса (таблица 3.27).

На четвертые сутки хранения по органолептическим показателям внешний вид мяса птицы (грудная мышца) в контрольной и второй группах была местами увлажнена поверхность, слегка липкая, потемневшая с темно-красной окраской, по консистенции во всех группах мышечная ткань была менее плотная и менее упругая, а образующаяся при надавливании пальцем ямка выравнивалась медленно - в течение минуты. Запах был слегка кисловатый, что не удовлетворяла

показателям свежести мяса и свидетельствовало о начале порчи продукта. Дополнительно были проведены химические и микроскопические анализы свежести в этих группах, которые подтвердили начала процесса порчи мяса. В поле зрения микроскопа уже были микробные клетки, но их количество не превышало 30 единиц. Кислотное число мяса птицы механической обвалки в этих группах соответствовало показателям мяса сомнительной свежести и было больше 4,5 мгКОН/г, а перекисное число соответствовало сомнительной свежести и находилось в пределах от 0,022 до 0,024 % І. третья, четвертая, пятая, шестая и седьмые группы имели показатели свежего мяса.

Таблица 3.27. - Изменение перекисного числа, % I и кислотного числа, мг КОН/г мяса цыплят-бройлеров при хранении в охлажденном и замороженном виде.

Показатель				Группа	,		
Hokusulesib	1 (ĸ)	2	3	4	5	6	7
Охлаж	денное м	иясо пти	цы механ	нической	обвалки		
Кислотное число мясо мгКОН/г 1 сутки хранения: 4 сутки хранения: 7 сутки хранения:	3,0 3,43 6,38	2,84 4,70 6,54	5,05 2,38 3,16	3,34 2,74 3,10	2,16 5,72 6,60	2,94 2,84 5,82	2,80 3,46 4,18
10 сутки хранения:	8,12	6,90	2,89	4,16	5,74	5,86	4,78
Перекисное число мясо, % I							
1 сутки хранения:	0,020	0,014	0,014	0,016	0,014	0,016	0,015
4 сутки хранения: 7 сутки хранения:	0,022 0,016	0,024 0,029	0,016 0,019	0,015 0,014	0,023 0,016	0,014 0,015	0,015 0,018
10 сутки хранения:	0,015	0,016	0,016	0,014	0,016	0,016	0,014

Замороженное мясо птицы механической обвалки							
Кислотное число							
мясо, мгКОН/г							
4 месяц хранения:	3,54	2,75	2,30	3,01	2,53	3,68	2,84
Перекисное число							
мясо, % І							
4 месяц хранения:	0,019	0,021	0,056	0,29	0,137	0,325	0,076

На седьмые сутки хранения мяса птицы и мясо птицы механической обвалки во всех группах соответствовало мясу сомнительной свежести. Кислотное число мяса птицы механической обвалки во всех группах соответствовало показателям мяса сомнительной свежести и не превышали 9,0 мгКОН/г, а перекисное число во всех группах было не более 0,04 % I

На десятые сутки хранения мяса птицы и мясо птицы механической обвалки во всех группах соответствовало не свежему мясу. Поскольку внешний вид грудных мышц во всех опытных группах был похожим: сильно подсохшая, покрытая слизью корочка подсыхания, консистенция была рыхлой, а запах был сильно кислый, затхлый. Несвежесть мяса и мяса птицы механической обвалки была также подтверждена химическими и микроскопическими анализами свежести. На десятые сутки хранения образцов, в мазках-отпечатках было множество микробных клеток в поле зрения микроскопа - более 30 микробных клеток с преобладанием палочковидных форм, наблюдался значительный распад мышечной ткани, почти полное исчезновение ядер и исчерченности мышечных волокон. Разницы между группами так же не было. Кислотное число мяса птицы механической обвалки во всех группах не превышало 9,0 мгКОН/г, а перекисное число всех групп было не более 0,04 % I, что соответствовало показателям мяса сомнительной свежести.

На четвертый месяц хранения (рекомендуемые сроки годности замороженного мяса кур со дня выработки, при температуре воздуха в холодильной камере, обеспечивающей поддержание температуры в толще

продукта: - не выше минус 12°C для частей тушек - не более 1 мес.) для размороженного мяса - цвет темно-розовый, с поверхности разреза стекает слегка мутноватый мясной сок, консистенция рыхловатая, запах слегка кислый, что соответствует мясу сомнительной свежести, о чем свидетельствуют показатели кислотного числа и перекисного числа. Так кислотное число во всех опытных группах соответствует свежему мясу и не превышает 4,5 мгКОН/г, однако в контрольной группе этот показатель немного выше опытных показателей и равен 3,54 мгКОН/г, перекисное число – мясу сомнительной свежести, лишь в 4, 5 и 6 группах этот показатель соответствовал не свежему мясу.

По результатам предыдущего исследования можно сделать вывод, что мясо птицы механической обвалки лучше сохраняло свежесть во второй и четвертых опытных группах. Эти данные были подтверждены в лаборатории ФГБНУ «ФНЦ пищевых систем им. В.М. Горбатова» РАН, где для определения малонового диальдегида, характеризующее количество вторичных продуктов окисления, были направлены образцы тушек цыплят-бройлеров из опытных групп 2 и 4.

В результате уровень малонового диальдегида (тиобарбитуровое число) (таблица 3.28), который определяли по ГОСТ Р 55810-2013 и ГОСТ 31470-2012 (п.9), на 1-е сутки хранения в мясе бройлеров всех групп был менее 0,039 мг МА/кг, что свидетельствует о хорошем качестве охлажденного мяса бройлеров.

Таблица 3.28. - Уровень малонового диальдегида (тиобарбитуровое число мг MA/кг) в липидах мышц цыплят-бройлеров при хранении

Группа	Уровень малонового диальдегида (Уровень малонового диальдегида
	1-е сутки хранения при	(4-е сутки хранения при
	температуре от 0 до $+2$ 0 C)	температуре от 0 до $+2$ 0 C)
1 к.	Менее 0,039	0,078±0,008
2	Менее 0,039	Менее 0,039
4	Менее 0,039	Менее 0,039

На 4-е сутки хранения показатели тиобарбитурового числа в опытных группах находились ниже или на уровне пределов измерения метода и не

превышали 0,039 мг МА/кг, в то время как у птицы контрольной группы показатель тиобарбитурового числа увеличился и находился на уровне 0,078±0,008 мг МА/кг, что свидетельствует о более интенсивном протекании процесса свободнорадикального окисления липидов мяса бройлеров и начале образования вторичных продуктов окисления.

Показатель перекисного числа определяли на 1-е сутки хранения и на 4-е сутки хранения представлен в таблицы 3.29, откуда следует, что величина перекисного числа липидов мяса бройлеров всех групп на 1-е сутки хранения находилась в диапазоне от 1,28 до 2,3 мэкв/кг, при этом самое низкое значение перекисного числа отмечено в группе 4, бройлеры которой получали композицию антиоксидантов в дозе 0,5 кг/т корма куркумы и 10г/т корма дигидрокверцетина, что свидетельствует о существенном замедлении образования перекисных соединений при использовании композиции антиоксидантов в этих дозировках.

Таблица 3.29 - Уровень перекисного числа мэкв/кг в липидах мышц цыплятбройлеров при хранении

Группа	Уровень перекисного числа (1-е	Уровень перекисного числа (4-е
	сутки хранения при температуре	сутки хранения при температуре от
	от $+5$ до $+7$ 0 C)	+5 до +7 °C)
1 к.	$1,98 \pm 0,50$	2,40±0,60
2	2,30±0,58	2,66±0,67
4	$1,28 \pm 0,32$	2,02±0,50

На 4-е сутки хранения охлажденного мяса бройлеров показатель перекисного числа увеличился во всех группах. При этом более низкие значения этого показателя характерны для четвертой группы, которая получала композицию антиоксидантов с включением дигидрокверцитина и куркумы в дозировках 500 и 10 г/т соответственно. Вместе с тем повышенное значение перекисного числа липидов мяса у цыплят второй группы, получавших куркуму в дозе 0,5 кг/т корма, при более низком значении тиобарбитурового числа в сравнении с контролем свидетельствует о том, что процессы образования

вторичных продуктов окисления липидов мяса у бройлеров второй группы протекают менее интенсивно, чем в первой контрольной группе, и на четвертые сутки хранения охлажденного мяса еще находятся на стадии преимущественного накопления перекисей.

Органолептическая оценка мяса охлажденных тушек при хранении показала различия между группами в зависимости от применения кормовой добавки. В контрольной группе на 4-е сутки хранения по комплексу органолептических тестов отмечено начало порчи мяса, особенно каркасной части. В опытных группах образцы мяса соответствовали свежему (таблица 3.30).

Таблица 3.30 - Ветеринарно-санитарная оценка тушек цыплят-бройлеров при хранении в охлажденном виде в условиях холодильной камеры

Показатель		Группа		
Показатель	1	2	4	
		4-е сутки хране	ния	
рН	6,2	5,8	5,9	
Реакция с				
сернокислой	Бульон прозрачный, без посторонних примесей			
медью				
Реакция на	Положительная реак	ция – вначале син	е-зеленое окрашивание,	
пероксидазу	через1-2 минуты, пе	ереходящее в буро-	-коричневый цвет.	
Микроскопия	До 30 кокков и			
мазков	палочек в поле	Единичные кокки	и палочки	
Maskob	зрения микроскопа			

3.4. Результаты производственной проверки

В наших предыдущих исследованиях установлено положительное влияние растительных антиоксидантов на основе куркумы и дигидрокверцетина на повышение продуктивности цыплят-бройлеров и улучшение качества мясной продукции за счет снижения свободно-радикального окисления липидов, показано, что эти природные добавки обладают фитобиотическими свойствами и

позволяют отказаться от использования кормовых антибиотиков при выращивании птицы [84, 86, 87].

Несмотря на то, что применение различных кормовых добавок, в том числе антиоксидантов, в период откорма цыплят бройлеров требует дополнительных затрат, которые увеличивают себестоимость произведённой продукции, конечной целью является увеличение производственных показателей (продуктивность, сохранность, убойный выход и качество продукции), способные окупить финансовые затраты, а также получить органическую продукцию, свободную от кормовых антибиотиков и остаточных количеств химически синтезированных препаратов. Исходя из того, что в процессе проведения научно-хозяйственных опытов получены положительные результаты и установлены рациональные уровни ввода применения природных антиоксидантов на основе куркумы и дигидрокверцетина в рационах цыплят-бройлеров нами была выполнена их оценка с позиции экономической эффективности.

Исходя из того, что в процессе научно-хозяйственного опыта результаты эффективности применения природных антиоксидантов в рационах цыплят-бройлеров показали высокие производственные результаты, было принято решение провести производственное испытание и определение экономической эффективности двух лучших групп: нового варианта 1 - ОР с добавлением куркумы в дозе 500 г/т корма и нового варианта 2 – ОР с добавлением комплекса антиоксидантов: куркумы и дигидрокверцетина в дозировках 500 г/т и 10 г/т корма соответственно.

Производственная проверка, проведенная c целью определения экономической эффективности действия антиоксидантов, подтвердила полученных научно-хозяйственных достоверность данных В опытах использованию в кормлении цыплят-бройлеров кросса «Росс 308» природных Результаты производственной антиоксидантов. проверки представлены таблицах 3.32 и 3.33.

Исходя из того, что в процессе научно-хозяйственного опыта результаты эффективности применения природных антиоксидантов в рационах цыплят-

бройлеров показали высокие производственные результаты, было принято решение провести производственное испытание и определение экономической эффективности двух лучших групп: нового варианта 1 - ОР с добавлением куркумы в дозе 500 г/т корма и нового варианта 2 — ОР с добавлением комплекса антиоксидантов: куркумы и дигидрокверцетина в дозировках 500 г/т и 10 г/т корма соответственно.

эффективности Для экономической определения использования антиоксидантных препаратов в комбикормах для цыплят-бройлеров проведена производственная проверка полученных результатов. Сформированы базового и новых вариантов по 105 голов цыплят-бройлеров в каждом варианте. Бройлеры контрольной группы (базовый вариант) получали комбикорма с питательностью, соответствующей рекомендациям ВНИТИП 2021 г. без использования антиоксидантов. Цыплята опытной группы (новый вариант 1) получали комбикорма с добавлением куркумы в дозировке 500 г/т корма (лучшая группа по итогам проведения первого опыта), цыплята опытной группы 2 (новый вариант 2) получали комбикорма с добавлением дигидрокверцетина и куркумы в дозировках 500 г/т и 10 г/т корма соответственно (лучшие группы по итогам проведения трех опытов). Схема производственной проверки, состав питательность комбикормов представлены в таблицах 2.5 и 2.6. Гарантийные уровни витаминов и микроэлементов вводили в состав комбикорма в составе витаминно-минерального премикса Приложение А

Установлено (таблица 3.31), что в 14-суточном возрасте живая масса цыплят нового варианта 1, получавших комбикорма с включением куркумы в дозировке 500г/т корма, была на 1,16% выше контроля, нового варианта 2 была выше контроля на 1,16%.

К 28-суточному возрасту бройлеры нового варианта 2 по живой массе превосходили контрольных аналогов на 3,07%, новый вариант 1 так же был выше контроля на 1,92%.

К концу выращивания средняя живая масса нового варианта 1 превышала контроль на 5,6%, а нового варианта 2 — на 4,56%. При этом живая масса

петушков нового варианта 1 была выше контроля на 9,31%, а курочек – на 1,5%, в то время как новый вариант 2 превышал контроль по живой массе петушков на 5,56%, а курочек на 3,46%.

Таблица 3.31. - Продуктивность цыплят-бройлеров кросса «Росс-308», получавших комбикорма с включением куркумы и дигидрокверцетина, (n=105) $M\pm m$ (Производственная проверка).

	Вариант			
Показатель	Базовый	Новый 1	Новый 2	
Сохранность	96,19	97,14	97,14	
поголовья, %				
Живая масса, г в				
возрасте, суток:				
Суточные	40,0 <u>+</u> 0,34	39,6 <u>+</u> 0,41	39,9 <u>+</u> 0,39	
7	138,3 <u>+</u> 1,2	130,0 <u>+</u> 0,6; в	130,8 <u>+</u> 0,6; в	
14	404,5 <u>+</u> 8,6	409,21 <u>+</u> 6,3	407,2 <u>+</u> 8,0	
28	1410,47 <u>+</u> 34,08	1434,55 <u>+</u> 38,43	1453,77 <u>+</u> 22,32	
35 (в среднем)	2023,33	2136,65	2115,65	
в том числе в 35:				
петушков	2123,65 <u>+</u> 35,84	2321,37 <u>+</u> 14,68; в	2241,81 <u>+</u> 15,56; в	
курочек	1923,0 <u>+</u> 39,02	1951,83 <u>+</u> 21,87	1989,47 <u>+</u> 18,63; б	
Затраты корма на 1	3,187	3,359	3,315	
гол., кг				
Затраты корма на 1 кг прироста живой массы, кг	1,607	1,602	1,597	

Среднесуточный	58,33	61,68	61,05
прирост живой			
массы ,г (35 суток)			
Убойный выход	72,11	74,36	73,26
тушки, %			
ЕИП, балл	349,14	377,70	375,02

Достоверность различий: a - $p \le 0.05$; f- $p \le 0.01$ в- $p \le 0.001$

Затраты корма на 1 кг прироста живой массы у цыплят новых вариантов были ниже контроля (1,607) и составляли 1,602; 1,597 кг на 1 кг прироста живой массы соответственно.

При оценке эффективности выращивания бройлеров по комплексному показателю - Европейский индекс продуктивности, установлено, что у бройлеров нового варианта 1 этот показатель на 21,09 балла больше контрольной группы, а у нового варианта 2 больше контроля на 16,55 баллов, что подтверждает данные предыдущих опытов о положительном влиянии куркумы в дозировке 500 г/т корма и дигидрокверцетина в дозировке 10 г/т корма на организм птицы.

Установлено (таблица 3.32), что в новом варианте 1 средняя живая масса 35-суточных цыплят была выше контрольных показателей на 5,6%, а затраты корма на 1 кг прироста снизились в сравнении с базовым вариантом на 0,31%. При этом, себестоимость произведенного 1 кг мяса бройлеров, складывающаяся из зарплаты, стоимости кормов, прочих прямых затрат, накладных расходов и затрат на убой, в новом варианте 1 была ниже по сравнению с базовым вариантом на 6,67 руб. В новом варианте 2 продуктивность 35-суточных цыплят была лучше, чем в базовом варианте: среднесуточный прирост повысился на 4,66%, конверсия корма улучшилась на 0,62%. Себестоимость 1 кг мяса снизилась на 4,66 руб.

Расчёт экономической эффективности проводили по формуле:

$$\Theta = (CE - CH) \times AH$$
, где

Э – экономический эффект производства мяса, руб.;

СБ, СН – себестоимость 1 кг мяса бройлеров (базовая и новая), руб.;

АН – количество произведённой продукции в новом варианте, кг

$$\Im 1 = (145,81 - 139,14) \times 163,65 = 1091,55 \text{ py}6.$$

$$\Im 2 = (145,81 - 141,15) \times 159,64 = 743,92 \text{ py6}.$$

Таким образом экономический эффект от использования куркумы в дозировке 500 г/т корма в новом варианте 1, с учетом производственных затрат на содержание бройлеров составил 1091,55 руб., а в новом варианте 2, где использовали куркуму в сочетании с дигидрокверцетином в дозировках 500 и 10г/т корма соответственно-743,92 руб.

В пересчёте на 1000 голов цыплят-бройлеров, сданных на убой, экономический эффект от выращивания бройлеров на рационах с добавлением куркумы в дозировке 500г/т корма, в новом варианте 1, равен 10495,67 руб., а в новом варианте 2, где добавляли куркуму и дигидрокверцетин в дозировке 500 и 10 г/т комбикорма соответственно - 7153,08 руб. (в ценах 2023 года).

Таблица 3.32 - Результаты производственной проверки.

Показатели	Вариант		
TTORUSUTOM!	базовый	1-новый	2-новый
1	2	3	4
Принято на выращивание, гол.	105	105	105
Поголовье на конец выращивания, гол.	101	103	103
Сохранность, %	96,19	98,1	98,1
Срок выращивания, сут.	35	35	35
Средняя живая масса суточного цыпленка, г	40	39,6	39,9
Средняя живая масса 1 гол. на конец выращивания, г	2023,3	2136,65	2115,65
Среднесуточный прирост, г	58,33	61,68	61,05
Валовая живая масса, кг	204,353	220,075	217,912
Валовый прирост живой массы, кг	200,153	215,917	213,722
Расход корма всего, кг	328,26	349,35	344,808

Потребление корма на 1 гол в сутки, г	93,73	98,8	97,51
Потребление корма на 1 гол за период выращивания, кг	3,19	3,36	3,31
Затраты корма на 1 кг прироста живой массы, кг	1,607	1,602	1,597
Масса потрошеной тушки, кг	1,459	1,589	1,550
Убойный выход потрошеной тушки, %	72,11	74,36	73,26
Убойный выход потрошеной тушки, кг	147,36	163,67	159,65
Средняя стоимость 1кг комбикорма, руб.	30,67	30,87	30,99
Стоимость одного суточного цыпленка, руб.	60,0	60,0	60,0
Средняя цена реализации 1 кг мяса, руб.	150,0	150,0	150,0
Общие затраты (руб.), в.т.ч.:	21487,02	22770,57	22532,51
Стоимость суточных цыплят	6300,0	6300,0	6300,0
Стоимость кормов	10066,29	10783,81	10684,94
Прочие прямые затраты	5120,73	5686,76	5547,57
Выручка от реализации мяса птицы, руб.	22104,00	24547,5	23946,0
Прибыль, руб.	616,98	1776,93	1413,49
Рентабельность производства бройлеров, %	2,87	7,8	6,27
Себестоимость 1 кг мяса, руб.	145,81	139,14	141,15
Экономический эффект, руб.		1091,55	743,92
Экономический эффект в расчете на 1000 голов, руб.		10495,67	7153,08

3.6. Обсуждение результатов собственных исследований

Проведенный патентный поиск и анализ литературных источников показал, что проблемы экологии, снижения негативной нагрузки на окружающую

среду, разработка кормовых добавок, способных снизить применение кормовых антибиотиков, в сочетании с обеспечением биобезопасности кормов и продукции посвящена значительная часть исследований [78, 88, 97]. Широко представлены работы по применению технологических приемов выращивания птицы, поиску и разработке кормовых добавок, позволяющих снизить количество абдоминального жира, за счет оптимизации липидного обмена и снижении затрат на производство продукции. В ряде работ уделяется внимание вопросам снижению перекисного окисления липидов, поиску природных антиоксидантов, биофлаваноидов, таких как орегано, душица, шалфей, розмарин и т.д. [7, 1, 5, 135]. Среди широко изучаемых флавоноидов большое внимание уделено кверцетину, особенно с позиций защиты организма от активных форм кислорода [27, 28], а также его производному – дигидрокверцетину, который был открыт в 1936 году американским биохимиком Альбертом, представляет собой И мелкокристаллический или аморфный порошок от белого до бело-кремового цвета, который легко смешивается с другими компонентами корма, при этом не качеств. Источниками меняя вкусовых дигидрокверцетина являются его вечнозеленые деревья, особенно хвойных пород [19, 29, 51].

Наши исследования ПО возможности применения рационах В сельскохозяйственных животных растительных, фитобиотических добавок с антиоксидантной активности на основе куркумы И дигидрокверцетина подтвердили возможность использования этих препаратов для улучшения продуктивности сельскохозяйственной птицы и качества продукции. согласуется и с опытами Paz Segovia Camila Mishel, 2020г., проведенными на бройлерах кросса Кобб 500, получавших комбикорма, с различными уровнями включения куркумы (0,5; 1,0 и 1,5 %), в которых установлено положительное влияние добавок куркумы на повышение живой массы и пигментацию тушки бройлеров. Показано, что с увеличением ввода куркумы эффект окраски подкожного жира и тушки более заметный [131].

О ростостимулирующем эффекте от включения куркумы (Curcuma longa) в дозе 0,05, 0,1 и 0,15%, связанном с повышением интенсивности обменных

процессов в организме, сообщали в своих работах Раz Segóvia Camila Michel, 2020. Проведенный ими анализ гематологических и биохимических показателей крови цыплят-бройлеров, перепелов и кур-несушек показал, что отмечено снижение уровня триглицеридов в крови, общего холестерина и холестерина ЛПНП (P<0,05). Аналогичные результаты получены и Puthpongsiriporn U, Scheideler SE, Sell 2001. В работах Devvrat Kosti и соавт. 2020 показано, что у птицы, получавшей комбикорма с включением 4,5% куркумы, выявлено снижение уровня глюкозы в крови (6,75%), что согласуются и с полученными нами данными, при включении куркумы в дозе 0,5 кг/т корма [131, 136, 84].

В наших опытах не отмечено негативного влияния куркумы на состояние гистоструктур печени и отклонения от физиологической нормы показателей трансаминаз печени, что согласуется с результатами, полученными Mennen L.I. и соавт. 2008, которые отметили, что добавление 3% порошка куркумы в корм курам-несушкам улучшало состояние печени, при этом содержание аспартатаминотрансферазы (АСТ) и аланинаминотрансферазы (АЛТ) снижалась. Похожие результаты получены в опытах и на других видах животных. (Dias и соавт. 2016, Emadi и Kermanshahi 2007), [120, 86, 89].

Изучению антиоксидантных и гепатопротекторных свойствах куркумы посвящены работы Shahidi, F. and Ambigaipalan, P. 2015, в которых установлено, что в позднепродуктивном периоде содержания кур-несушек добавки куркумы улучшали состояние печени и достоверно снижали уровень триглицеридов и общего холестерина в сыворотке крови [78]. Похожие результаты получены и в медицинских клинических исследованиях на людях, полученных Мооп, J,2012, Shin, H. S. 2010. В работах Shin показано, что потребление с пищей 500 мг куркумина в день, в течении 7 дней, значительно снижает липидную пероксидазу, при этом увеличивается уровень ЛПВП-холестерина, понижается общий холестерин сыворотки крови за счет индукции экспрессии СҮР7А1 [142, 122].

Как известно, действующее вещество куркумы - куркумин, который широко используется в пищевой промышленности в качестве красителя. В наших совместных исследованиях с Самойловым А.В. показано [21], что применение

куркумина способствует повышению скорости роста бройлеров и оказывает положительное влияние на органолептические свойства мяса, замедляет процессы перекисного окисления липидов и, связанное с ним, накопление вторичных продуктов окисления.

Вместе с тем применение экстрактов лекарственных растений не всегда позволяет сохранить все полезные биологически активные вещества, Проведенный нами химический анализ содержащиеся в нативном продукте. состава куркумы показал, что кроме биологически активных веществ, в ней содержатся значимые уровни калия и меди, наличием которых объясняются антисептические свойства добавки и способность снижать последствия теплового стресса, что широко используется в странах с жарким климатом. Как известно, добавки в рацион солей калия в основном применяются в кормопроизводстве для коррекции баланса электролитов. Вместе с тем по литературным данным и работам, выполненных в ФНЦ «ВНИТИП» (Лемишева) показано, что калий оказывают положительное действие на синтез белка, снижая антагонизм между лизином и аргинином.

Нами установлено, что включение добавок куркумы в рацион способствовало улучшению липидного обмена, при этом переваримость жира улучшалась на 6,55; 4,83 и 7,56%, что согласуется с данными, полученными Rajput и др. и работами Frederick C. De Beer и др. 2005, где показано, что более высокое усвоение жира, возможно, обусловлено стимуляцией гормона Т4 [138, 110].

Распространена практика для повышения доступности куркумина из куркумы использовать пеперин, содержащийся в горьком перце. Нами с этой целью для усиления антиоксидантных свойств куркумы, была рассмотрена возможность применения дигидрокверцетина и определены рациональные уровни его ввода в комбикорма. Установлена возможность использования его для замены кормовых антибиотиков и снижения интенсивности окислительного стресса.

Показано, что введение в комбикорма дигидрокверцетина в дозе 5, 10, 15 г/т корма способствовало высокой сохранности птицы, повышению живой массы

бройлеров в 21 и 35- дневном возрасте на 2,7; 0,8; 5,4% и 2,36; 6,05; 5,42%, при снижении затрат корма на 1 кг прироста живой массы на 5,85; 6,64; 6,58%. Кроме фитобиотических этого, наши опыты подтвердили наличие свойств дигидрокверцетина и куркумы, также их положительное a влияние микрофлору ЖКТ цыплят бройлеров. Так куркума и дигидрокверцетин обладают выраженной антимикробной активностью по отношению к S. aureus и E. coli., угнетают рост стрептококков и грибов рода Candida, способствуя росту полезной нормофлоры птицы, что согласуется с данными, полученными Mennen L.I., Sapinho D., Ito H., Galan P., Hercberg S., Scalbert A. (2008); Namagirilakshimi и др. 2010 [106, 109] и подтверждаются результатами гистологических исследований, выполненных нами, а также описанных в работах Radgput и др. 2013, Namagirilakshimi и др. 2010. Так увеличение длины кишечных ворсинок, их целостности, связано с оптимизацией уровня рН кишечника, снижением бактериальной нагрузки и избирательного увеличения популяции лактобацилл (Shin и др. 2010). Антиоксиданты могут эффективно уничтожать образующиеся свободные радикалы, вызванные тепловым стрессом, что, следовательно, приводит уменьшению воспаления кишечника улучшению функционированию клеток (Uauy и др. 2012)[120, 125, 138, 150, 142].

Полученные нами результаты согласуются и с исследованиями Кузьминой Н.Н., изучавшей действие более высоких уровней дигидрокверцетина [31, 115], опытами Лыско С. Б., в которых получены положительные результаты по применению препарата на основе хвои, содержащий дигидрокверцетин, на продуктивность цыплят-бройлеров [34].

О положительном воздействии дигидрокверцетина на оксигенацию крови сообщается в ряде медицинских исследованиях, выполненных при лечении больных короновирусом, В которых установлено, что дигидрокверцетин способствует поддержке здоровья бронхолегочной системы, улучшает состояние способствует профилактике тромбоза кровеносных сосудов, внезапной смерти у бройлеров. Имеются данные, что дигидрокверцетин обладает противовирусной активностью ингибируя репликацию вирусной ДНК.

Нами установлено, что включение дигидрокверцетина в изучаемых нами дозировках оказало положительное влияние на перекисное окисление липидов охлажденного и замороженного мяса, что согласуется с данными Н.Н. Кузьминой с соавторами [31, 115], где описано ингибирующее действие дигидрокверцетина на образование гидроперекисей и пероксидов. Показатели перекисного числа через 28 суток хранения составило (3,7285+0,07) – (3,8695+0,02) моль кислорода/кг против (5,4520+0,04) – (5,6197+0,03) моль кислорода/кг в контрольных образцах [31, 115].

Как известно, для повышения доступности куркумина из куркумы используют пеперин, содержащийся в горьком перце. Нами с этой целью была рассмотрена возможность применения дигидрокверцетина. Исследование эффективности такой композиции в литературе не приводится. Наши опыты показали, что добавки куркумы обеспечивают больший ростостимулирующий эффект, чем добавки дигидрокверцетина, вместе с тем, дигидрокверцетин является более сильным антиоксидантом и фитобиотиком в сравнении с куркумой. Изучение биологического и продуктивного действия куркумы позволило нам рекомендовать данную композицию для замены кормовых антибиотиков, повышения продуктивности цыплят бройлеров и продления срока хранения охлажденного и замороженного мяса.

Исследования по данному направлению будут продолжены, так как при гистологическом исследовании печени бройлеров, в периваскулярном пространстве отмечены локальные очаги воспаления с разной степенью лимфомоноцитарной инфильтрации, вызывающей интерцеллюлярный отек ткани, связанные, по-нашему мнению с раздражающим действием на клетки печени образующихся соединений от взаимодействия куркумы и дигидрокверцетина. При включении витамина Е в состав композиции изменение гистоструктур не наблюдалось.

Заключение:

Обобщая, полученные нами результаты, необходимо отметить, что для повышения биологической полноценности кормов и мяса птицы, замены кормовых антибиотиков, химически синтезированных антиоксидантных препаратов, получения экологически безопасной для человека продукции, могут быть использованы природные фитобиотические препараты с антиоксидантной активностью на основе куркумы (лат. $Curcuma\ longa\ c$ содержанием куркумина не менее 6%) и дигидрокверцетина ($C_{15}H_{12}O_7$), полученного из лиственницы Даурской, по технологии компаний ООО «Экоинагротех» с содержанием активного вещества не менее 95%. На основании проведенных исследований установлено, что:

- 1. Применение в качестве антиоксидантов куркумы и дигидрокверцетина позволяет снизить интенсивность перекисного окисления липидов комбикорма, что оказывает влияние на меньшее изменение кислотного и перекисного числа корма при его хранении.
- 2. Включение в комбикорма для бройлеров куркумы в количестве 0,5; 1,0 и 1,5 кг/т корма способствовало повышению живой массы бройлеров и увеличению % выхода грудного филе на 1,13; 1,5 и 0,95% в сравнении с контролем, за счет увеличения интенсивности белкового, липидного и минерального обмена. Отмечено снижение содержание жира в мясе опытных бройлеров на 2,77% за счет улучшения переваримость жира на 6,55; 4,83 и 7,56%. Включение 0,5 кг/т куркумы способствовало повышению переваримости протеина, доступности лизина и метионина на 0,13; 0,22; 0,4%. Использование кальция повысилось на 0,92; 1,2 и 5,7%.

- 3. Установлено, добавки куркумы способствовали процессу замедления окисления липидов охлажденного мяса. Изменение перекисного и кислотного чисел на 4-сутки хранения составило 0,016; 0,184 и 0,18 % І против 0,071 % І в контроле для перекисного числа и 2,02; 1,36 и 1,06 мг КОН/г против 1,25 мг КОН/г для кислотного числа, что соответствует допустимым нормам качества мяса. При проведении бактериоскопии мазков значимых различий между опытными и контрольными группами не отмечено.
- 4. Оценка физиологического состояния печени и поджелудочной железы бройлеров не выявила изменений гистоструктур этих органов, и не оказала негативного влияния на гематологические и биохимические показатели крови у бройлеров, получавших добавки куркумы в изучаемых дозировках.
- 5. Установлено, что введение в комбикорма дигидрокверцетина в дозе 5, 10, 15 г/т корма способствовало высокой сохранности птицы, повышению живой массы бройлеров в 21 и 35— дневном возрасте на 2,7; 0,8; 5,4% и 2,36; 6,05; 5,42%, при снижении затрат корма на 1 кг прироста живой массы на 5,85; 6,64; 6,58%.
- 6. Установлено, что добавки дигидрокверцетина и куркумы обладают фитобиотической активностью, способствуют увеличению полезной и снижению патогенной и условнопатогенной микрофлоры в ЖКТ цыплят бройлеров и могут использоваться для замены в комбикормах для бройлеров кормовых антибиотиков при сравнимой продуктивности птицы. Среднесуточный прирост живой массы цыплят опытных групп составил 59,81; 62,01; 61,63; 61,23 г против 60,24 г у цыплят, получавших кормовой антибиотик.
- 7. Использование дигидрокверцетина и куркумы способствовало увеличению убойного выхода тушки на 1,01; 1,76;1,0; 2,32%, и % выхода грудного филе на 1,05; 2,95; 0,93 и 1,13% при меньшем содержании жира.
- 8. По результатам проведенного анализа содержимого слепых отростков кишечника методом qPCR установлено, что куркума и дигидрокверцетин обладают выраженной антимикробной активностью по отношению к грамположительной (S. aureus) бактериальной микрофлоре.

- 9. Антиоксидантные свойства дигидрокверцетина способствуют замедлению процессов перекисного окисления липидов (изменение перекисного и кислотного чисел липидов охлажденного мяса на 4-сутки хранения составило 0,013; 0,016 и 0,015 % І против 0,014 % І в контроле для перекисного числа и 4,90; 2,58 и 2,82 мг КОН/г против 3,64 мг КОН/г для кислотного числа), что соответствует допустимым нормам ветеринарно-санитарного качества продукции.
- 10. Введение в комбикорма 0,5 кг/т куркумы (2 группа), 10 г/т дигидрокверцетина (3 группа), 0,5кг/т куркумы в сочетании 10 г/т ДКВ (4 группа) способствовало повышению живой массы бройлеров в 21 и 35— дневном возрасте на 9; 3,6; 7,8% и 6,05; 3,2; 4,35%, при высокой сохранности поголовья и лучшей конверсией корма в сравнении с контролем.
- Анализ гистоструктур печени бройлеров, получавших добавки дигидрокверцетина и дигидрокверцетина, в сочетании с куркумой, отмечено увеличение лимфоидных инфильтратов, в сравнении с контролем. При включении E витамина на фоне применения добавок дигидрокверцетина дигидрокверцетина куркумой отмечено снижение интенсивности воспалительного процесса. Во второй и пятой группах, получавших куркуму и куркуму с витамином Е гистоморфологических изменений не обнаружено.
- 12. Анализ качества охлажденного мяса бройлеров, получавших 500г/т куркумы и 500г/т куркумы в сочетании 10 г/т ДКВ, показал, что на 4-сутки хранения перекисное число охлажденного мяса бройлеров, составило 2,66; 2,02 мэкв/кг против 2,4 мэкв/кг в контроле, при этом содержание вторичных продуктов окисления (тиобарбитуровое число) составляло по 0,039 мгМА/кг против 0,078 мгМА/кг.
- 13. Экономический эффект от включения в комбикорма бройлеров куркумы в дозировке 500г/т корма (новый вариант 1) составил 1091,55 руб., а использование 500 г/т куркумы в сочетании с 10 г/т дигидрокверцетина (новый вариант 2) -743,92 руб., что в пересчёте на 1000 голов цыплят-бройлеров составляет 10495,67 руб. и 7153,08 руб. (в ценах 2023 года) соответственно.

ПРЕДЛОЖЕНИЯ ПРОИЗВОДСТВУ И ПЕРСПЕКТИВЫ ДАЛЬНЕЙШЕЙ РАЗРАБОТКИ ТЕМЫ.

- 1. Для повышения продуктивности и качества мяса бройлеров, замедления процессов перекисного окисления липидов рекомендуем включать в комбикорма 500 г/т куркумы.
- 2. Рекомендуем использовать композицию растительных фитобиотиков с антиоксидантной активностью на основе 500 г/т куркумы в сочетании с 10 г/т дигидрокверцетина: для замены кормовых антибиотиков, повышения продуктивности цыплят бройлеров и продления срока хранения охлажденного и замороженного мяса.

Перспективы дальнейшей разработки исследования, темы: направленные на повышение биологической полноценности кормов и мяса птицы, получения функциональной продукции без использования кормовых антибиотиков и кокцидиостатиков с применением безопасных природных, растительных добавок, их поиск и разработка являются актуальными и востребованными. Дальнейшие работы по данной тематике предполагают эффективности изучение применения композиции антиоксидантов эмульгированной форме как в раннем, так и в заключительном периоде онтогенеза, включая период голодной выдержки птицы перед убоем, с целью обеспечения лучшего санитарного состояния охлажденного мяса бройлеров.

СПИСОК ЛИТЕРАТУРЫ

- 1. Андрианова, Е.В. Оксидативный стресс в патогенезе заболеваний/ Е.В. Андрианова, Е.Н. Егорова// в сборнике: Молодёжь и медицинская наука. Материалы V Межвузовской научно-практической конференции молодых ученых. 2018. С. 30 34.
- 2. Андрианова, Е.Н. Добавка Винивет на основе продуктов пчеловодства как альтернатива кормовым антибиотикам в комбикормах для цыплят-бройлеров: бактерицидный и биостимулирующий эффект применения/ Е.Н. Андрианова, И.А. Егоров, Л.М. Присяжная, Л.Т. Ахметова, Ж.Ж. Сибгатуллин, Н.А. Слесаренко, Г.В. Кондратов, И.Н. Никонов, Г.Ю. Лаптев// Сельскохозяйственная биология. 2016. т. 51. №2. С. 213 222. doi:10.15389/agrobiology.2016.2/213 rus
- 3. Андрианова, Е.Н. Добавка на основе продуктов пчеловодства/ Е. Андрианова., Л. Присяжная, Ж. Сибгатуллин, Л. Ахметова и др.// Комбикорма. 2007. № 8. С. 82 83.
- 4. Архипов, А.В. Липидное питание, продуктивность птицы и качество продуктов птицеводства: учебное пособие для студентов высших учебных заведений, обучающихся по специальности 310700 "Зоотехния" / А. В. Архипов. Москва: Агробизнесцентр, 2007. 434 с.; ISBN 978-5-902792-12-3
- 5. Виничук, С.М. Окислительный стресс при остром ишемическом инсульте и его коррекция с использованием антиоксиданта мексидола/ С.М. Виничук, В.А. Мохнач, М.М. Прокопив, Н.С. Турчина// Международный неврологический журнал. 2006. №1. С. 18 22.
- 6. Виноградов, П.Н Методические рекомендации по технологическому проектированию птицеводческих предприятий / П.Н.Виноградов, С.С. Шевченко, М.Ф. Мальгин, О.Л. Седов, Е.С. Янова; В.И.Фисинин, Я.С. Ройтер, В.С. Лукашенко, А.Ш. Кавтарашвили, В.А. Гусев, В.Г.Тюрин. Москва: 2013. 212 с.
- 7. Вишняков, А.И. Экологические аспекты гемопоэза птиц // Вестник ОГУ. – № 6 /июнь 2009. – С. 106–107

- 8. Гамко, Л.Н. Биологически активные вещества в животноводстве / Л.Н. Гамко, В.Е. Подольников, Г.Ф. Подобай Брянск: Изд-во БГСХА, 2011. 183 с.
- 9. Горшкова, Е.В. Влияние БАВ на массу сердца цыплят-бройлеров // в сборнике: Инновационное развитие животноводства в современных условиях// Сборник трудов по материалам национальной конференции с международным участием, посвящённая памяти, 75-летию со дня рождения Заслуженного работника высшей школы РФ, Почетного работника высшего профессионального образования РФ, Почетного профессора Брянского ГАУ, профессора Нуриева Геннадия Газизовича. Брянск. 2021. С. 39-44.
- 10. ГОСТ 13496.18-85 Комбикорма, комбикормовое сырье. Методы определения кислотного числа жира: Утвержден и введен в действие Постановлением Государственного комитета СССР по стандартам от 27.06.85 N 2043: Дата введения 1986-07-01
- 11. ГОСТ 13496.2-91 Корма, комбикорма, комбикормовое сырье. Метод определения сырой клетчатки: Утвержден и введен в действие Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 28.06.91 N 1183: Дата введения 1992-07-01
- 12. ГОСТ 13496.3-92 Комбикорма, комбикормовое сырье. Методы определения влаги: Утвержден и введен в действие Постановлением Комитета стандартизации и метрологии СССР от 28.02.92 N 187: дата введения 1993-01-01.
- 13. ГОСТ 25392-82 Жиры животные топленые пищевые. Технические условия: Утвержден и введен в действие Постановлением Государственного комитета СССР по делам строительства от 04.03.82 N 43: Дата введения 1983-01-01
- 14. ГОСТ 31962-2013 Мясо кур (тушки кур, цыплят, цыплят-бройлеров и их части): принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 7 июня 2013 г. N 43) Приказом Федерального агентства по техническому регулированию и метрологии от 29 июля 2013 г. N 453-ст межгосударственный стандарт ГОСТ 31962-2013 введен в действие в

качестве национального стандарта Российской Федерации с 1 июля 2014 г.: Дата введения 2014-07-01

- 15. ГОСТ 9959-2015 Мясо и мясные продукты. Общие условия проведения органолептической оценки: принят Межгосударственным советом по стандартизации, метрологии и сертификации (протокол от 27 октября 2015 г. N 81-П) Приказом Федерального агентства по техническому регулированию и метрологии от 11 марта 2016 г. N 141-ст межгосударственный стандарт ГОСТ 9959-2015 введен в действие в качестве национального стандарта Российской Федерации с 1 января 2017 г.: Дата введения 2017-01-01.
- 16. ГОСТ Р51417-99 Корма, комбикорма, комбикормовое сырье. Определение массовой доли азота и вычисление массовой доли сырого протеина. Метод Къельдаля: принят и введен в действие Постановлением Госстандарта России от 22 декабря 1999 г. N 572-ст: Дата введения 2001- 01- 01
- 17. Демидова, Е.С Препарат на основе куркумы и витамина Е в комбикормах для цыплят-бройлеров // В сборнике: Материалы Международной научной конференции молодых учёных и специалистов, посвящённой 135-летию со дня рождения А.Н. Костякова. 2022. С. 528 532
- 18. Демидова, Е.С. Влияние антиоксидантных препаратов на качество мяса цыплят-бройлеров/Е.С. Демидова, Е.Н. Андрианова, О.И. Кочиш// Птица и птицепродукты. 2024. № 4. С. XX–XX. Https://doi.org/10.30975/2073-4999-2024-26-4-XX-XX.
- 19. Демидова, Е.С. Использование дигидрокверцетина в кормлении цыплят-бройлеров //Птица и птицепродукты. 2023. № 2. С. 25-28. DOI: 10.30975/2073-4999-2023-25-2-25-28
- 20. Демидова, Е.С. Использование куркумы в кормлении цыплятбройлеров // В сборнике: Интеллектуальный потенциал молодых ученых как развития АПК. драйвер материалы международной научно-практической конференции обучающихся. Санкт-Петербургский молодых ученых И государственный аграрный университет. Санкт-Петербург: 2022. - С. 230-234.

- 21. Демидова, Е.С. Мицеллированный куркумин в кормлении цыплятбройлеров/ Е.С. Демидова, И.А. Егоров, Е.Н. Андрианова, А.В. Самойлов, Е.М. Волочаева // Птицеводство. - 2022. - № 3.- С. 17-21.- DOI: 10.33845/0033-3239-2022-71-3-17-21
- 22. Джатдоева, А.А. Тканевая хемилюминесценция как метод оценки супероксид радикал-продуцирующей способности митохондрий/ А.А. Джатдоева, А.М. Полимова, Е.В. Проскурнина, Ю.А. Владимиров // Вестник РГМУ. 2016. №1
- 23. Дубровин, А.В. Иммунный статус промышленной птицы на предприятиях / А.В. Дубровин, Е.А. Йылдырым, Л.А. Ильина, В.А. Филиппова, Е.С. Пономарева, К.А. Калиткина, Г.Ю. Лаптев // Птицеводство. 2022. № 5. С. 49-54.
- 24. Егоров И.А. Способ повышения продуктивности и качества мяса цыплят-бройлеров / И.А. Егоров, Е.Н. Андрианова, Е.С. Демидова, Е.Н. Григорьева // Патент России № 2787733. 2023. Бюл. № 2
- 25. Егоров И.А. Способ снижения окисления липидов в комбикормах и улучшения качества мяса цыплят-бройлеров при его хранении / И.А. Егоров, Е.Н. Андрианова, Е.С. Демидова, Е.Н. Григорьева // Патент России № 2789178. 2023. Бюл. № 4
- 26. Енгашев С.В., Германов С.Б., Мельниченко В.И., Енгашева Е.С., Хомишин Д.В., Лопашев Р.С., Лесниченко И.Ю. Способ купирования теплового стресса кур // Патент России № 2602199. 2016. Бюл. № 31.
- 27. Забашта, Н.Н. Использование биотехнологических приемов, пищевых добавок в технологии мясных продуктов (часть 2): метод. указания к выполнению лабораторных работ / Н. Н. Забашта, А. А. Нестеренко. Краснодар: КубГАУ. 2019. 32 с.
- 28. Захарова, Е.В. Дигидрокверцетин в БАД для птицы// В сборнике: Агропромышленный комплекс: проблемы и перспективы развития. 2018. С. 267-268.

- 29. Колхир, В.К. Диквертин новое антиоксидантное и капилляропротек-торное средство / В.К. Колхир, Н.А. Тюкавкина, В.А. Быков // Хим.-фарм журнал. 1995. №9. С.61.
- 30. Кочиш, И.И. Моделирование процессов взаимодействия микроорганизмов в кишечнике кур / И.И. Кочиш, И.Н. Никонов, М.В. Селина // Ветеринария, зоотехния и биотехнология. 2022. №4. С. 23-34. DOI:10.36871/vet.zoo.bio.202204003
- 31. Кузьмина, Н.Н. Сравнительная оценка эффективности применения натуральных антиоксидантов в мясном сырье / Н.Н. Кузьмина, О.Ю. Петров, С.С. Козак, В.Г. Семенов // Птица и птицепродукты. 2023. № 2. С. 43-46. Doi: 10.30975/2073-4999-2023-25-2-43-46
- 32. Лемеш, Е.А. Использование консерванта в производстве варено-копченых колбас/ Е.А. Лемеш, А.Н. Гулаков, А.Е. Рябичева, С.И. Шепелев // Актуальные проблемы интенсивного развития животноводства: материалы междунар. Науч.-прак. Конф. Брянск: 2018. С. 31 34.
- 33. Лукашенко, В.С. Методика проведения анатомической разделки тушек, органолептической оценки качества мяса и яиц сельскохозяйственной птицы и морфологии яиц/ В.С. Лукашенко, М.А. Лысенко, Т.А. Столляр, А.Ш. Кавтарашвили, О.А. Лукашенко, В.В. Дычаковская, А.И. Калашников // Государственное научное учреждение Всероссийский научно-исследовательский и технологический институт птицеводства Россельхозакадемии. Сергиев Посад: 2013. С. 4-18.
- 34. Лыско, С.Б. Эффективность применения фитопрепарата на основе хвои при выращивании цыплят-бройлеров// Птица и птицепродукты. 2023. №1. С. 40-42. DOI 10.30975/2073-4999-2023-25-1-40-42
- 35. Мазо, В.К. Функциональные яйцепродукты/ В.К. Мазо, А.Ш. Кавтарашвили, И.Л. Стефанова и др. М.: Де"Либри, 2018. с. 270.
- 36. Макарова, З.П. Изменение показателей качества мяса цыплятбройлеров при использовании кормовых добавок/ З.П. Макарова, А.С.

- Мижевикина, И.А. Лыкасова, Д.В. Полубояров // FARM NEWS. №6. 2019. С. 52-55 УДК: 637.54'65.05:636.52/.58.087.7-053.2
- 37. Мартусевич, А.К. Оксидатианый стресс и его роль в формировании дизадаптаци и патологии/ А.К. Мартусевич, К. А Карузин // Биорадикалы и антиоксиданты. 2015. №2. С. 5-18
- 38. Методические рекомендации MP 2.3.1.1915-04 Рекомендуемые уровни потребления пищевых и биологически активных веществ: утверждены Федеральной службой по надзору в сфере защиты прав потребителей и благополучия человека: 2 июля 2004 года.
- 39. Мясникова, О.В. Выращивание цыплят-бройлеров без кормового антибиотика и улучшение качества готовой продукции с помощью проактив поултри / А.Д. Аносова, О.В. Мясникова // в сборнике: Неделя студенческой науки. Материалы Всероссийской студенческой научно-практической конференции. Москва: 2022. С. 98-100.
- 40. Николаев, С.И. Влияние различной структуры рациона на продуктивные качества кур/ С.И. Николаев, А.К. Карапетян, Ю.В. Сошкин, О.Е. Кротова// Известия Нижневолжского агроуниверситетского комплекса: наука и высшее профессиональное образование. 2013. -№ 1(29). С. 107-111
- 41. Ноздрин, Г.А. Фармакологические аспекты применения пробиотиков на основе Вас. subtilis для стимуляции роста животных / Г.А. Ноздрин, А.Б. Иванова, А.Г. Ноздрин, А.И. Шевченко // Новые фармакологические средства в ветеринарии: материалы междунар. науч.-практ. конф. СПб.: 2003. С. 27–28.
- 42. Околелова, Т.М. Оценка физиологического состояния птицы по показателям крови/ Т.М. Околелова, С.В. Енгашев, И.А. Егоров, Т.А. Егорова // Птицеводство. №1. 2023. С. 45-50. DOI: 10.33845/0033-3239-2023-72-1-45-50
- 43. Османян, А.К. К вопросу о критериях комплексной оценки эффективности производства мяса бройлеров/ А.К. Османян, В.В. Малородов // Птицеводство. 2022. № 1. С. 47-51. DOI: 10.33845/0033-3239-2022-71-1-47-51
- 44. Панин, А.Н. Иммунобиотики в ветеринарной практике / А.Н. Панин, Е.В. Зинченко. Пущино: 2000. 163 с.

- 45. Плотников, М.Б. Лекарственные препараты на основе дикверцетина/ М.Б. Плотников, Н.А. Тюкавкина, Т.М. Плотников. Томск: 2005. 228 с.
- 46. Подобед, Л.И. Кормление и технологические нарушения в птицеводстве и их профилактика / Л.И. Подобед, В.И. Фисинин, И.А. Егоров, Т.М. Околелова // научно-практическое руководство. Одесса: 2013. с. 496
- 47. Пономаренко, Ю. Корма, кормовые добавки, биологически активные вещества для сельскохозяйственной птицы/ Ю. Пономаренко, В. Фисинин, И. Егоров // М: 2009. с. 28
- 48. Постановление Главного государственного санитарного врача Российской Федерации от 14.11.2001 №36 «Об утверждении санитарных правил и норм СанПиН 2.3.2.1078-01 Гигиенические требования безопасности и пищевой ценности пищевых продуктов.
- 49. Проскурнина, Е.В. Свободные радикалы как участники регуляторных и патологических процессов/ Е.В. Проскурнина, Ю.А. Владимиров // Биофизические медицинские технологии. 2015. С. 38-72.
- 50. Прохасько, Л.С. Продукты функционального питания животного происхождения / Л. С. Прохасько, В. Р. Гридчина, Е. В. Симоченко // Молодой ученый. 2015. № 4 (84). С. 238-241.
- 51. Радаева, И.А. Способ производства молочных концентратов с дигидрокверцетином и метод контроля его содержания/ И.А. Радаева, Н.А. Тюкавкина, С.Я. Соколов, С.П. Шулькина, И.А. Руленко, В.А. Бабкин// Патент РФ 2043030. Зарегистрировано в Госреестре изобретений РФ 10 сентября 1995 г.-бюл. «Открытия. Изобретения» №25, 1995 г.
- 52. Рябичева, А.Е. Микробиология: учебно-методическое пособие / А.Е. Рябичева, Х.М. Исаев. Брянск: Изд-во Брянского ГАУ, 2015. 172 с.
- 53. Тарарыков, А.А. Влияние фитобиотика TAR AMARTURMERIC+ на иммунный статус, продуктивность ремонтного молодняка и репродуктивные качества кур-несушек родительского стада// Птица и птицепродукты. 2023. № 1. С. 32-38.

- 54. Теселкин, Ю.О. Антиоксидантные свойства дигидрокверцетина / Ю.О. Теселкин, Б.А. Жамбалова, И.В. Бабенкова, Г.И. Клебанов, И.А. Тюкавкина // Биофизика. 1996. том 41. №3. С.620.
- 55. Технический регламент Евразийского экономического союза "О безопасности мяса птицы и продукции его переработки" (TP EAЭC 051/2021)
- 56. Топорова, Л.В. Токсические вещества и их использование в кормах для пушных зверей / С.В. Бекетов, И.В. Богомолова, М.Н. Прадед, И.В. Топорова, Л.В. Топорова, А.П. Каледин // Успехи современной биологии. 2023. Т. 143. № 4. С. 359 374. DOI: 10.31857/S0042132423040038
- 57. Трухачев, В.И. Аналитические комплексы нового поколения для оценки качества продукции АПК // В.И. Трухачев, А.В. Жевнеров, С.Л Белопухов// В сборнике: Приоритетные направления научно-технологического развития аграрного сектора России. Материалы всероссийской (национальной) научно-практической конференции, посвященной Дню российской науки. Улан-Удэ: 2023. С. 228-233.
- 58. Уголев, А.М. Теория адекватного питания и трофология/ Изд.Концептуал// Москва: 2017 288 с.
- 59. Фисинин, В.И Промышленное птицеводство/ В.И. Фисинин, Я.С. Ройтер, А.В. Егорова, Е.Е. Тяпугин, Л.Ф. Дядичкина, Ю.С. Голдин, А.П. Коноплева, И.А. Егоров, В.А. Манукян, Т.М. Околелова, Т.Н. Ленкова, Е.Ю. Байковская, Е.Н. Андрианова, Т.В. Егорова, Т.А. Егорова, А.Ш. Кавтарашвили, Е.Н. Новоторов, В.С. Лукашенко, И.П. Салеева, В.Г. Шоль и др. монография// ФНЦ «ВНИТИП» РАН. Москва: 2016 (6-е издание, переработанное и дополненное). 532 с.
- 60. Фисинин, В.И. История птицеводства российского //Том 1. Москва: 2014.-c 348
- 61. Фисинин, В.И. Методика проведения научных и производственных исследований по кормлению сельскохозяйственной птицы. Молекулярногенетические методы определения микрофлоры кишечника/ И.А. Егоров, В.А. Манукян, Т.Н. Ленкова. Т.М. Околелова, В.С. Лукашенко, А.Н. Шевяков, Г.В.

- Игнатова, Т.В. Егорова, А.А. Грозина, Г.Ю. Лаптев, И.Н. Никонов, И.Л. Александрова, Л.А. Ильина, Н.И. Новикова // Всероссийский научно-исследовательский и технологический институт птицеводства (ВНИТИП). Сергиев Посад: 2013. С. 1-51
- 62. Фисинин, В.И. Руководство по кормлению сельскохозяйственной птицы/ И.А. Егоров, В.А. Манукян, Т.Н. Ленкова и др.// Методическое руководство: Издательство: ООО "Лика". Сергиев Посад: 2018. С.225
- 63. Фисинин, В.И. Состояние и развитие отечественного и зарубежного птицеводства. Материалы Всероссийской научно-производственной конференции по птицеводству. Казань: 2010. С. 3–8.
- Фисинин, В.И. Химический анализ кормов, помета, печени, мяса цыплят-бройлеров был выполнен по общепринятым методикам биохимического анализа// В.И. Фисинин, А.Н. Тишенков, И.А. Егоров, Т.Н. Ленкова, А.Н. Шевяков, Н.И. Толкачева, Л.В. Кривопишина, Г.Г. Пажитнова, Н.П. Зайцева, Л.Ф. Дядичкинав, Н.С. Позднякова, В.С. Лукашенко, Р.В. Карапетян, Л.Г. Коршунова, M.A. H.B. H.A. Кравченко, B.A. Москалева, Лысенко. Кожемяка// Государственное научное учреждение Всероссийский научно-исследовательский и технологический институт птицеводства Россельхозакадемии. – Сергиев Посад: 2010. - C. 20
- 65. Хаитов, Р.М. Современные представления о защите организма от инфекций / Р.М. Хаитов, Б.В. Пинегин // Иммунология. 2000. №1. С. 61–64.
- 66. Харламов, К.В. Научно-практическое обоснование повышения эффективности использования кормов в птицеводстве // Автореферат диссертации на соискание ученой степени доктора сельскохозяйственных наук. Сергиев Посад: 2011. с. 3.
- 67. Чеснокова, Н.П. Понукалина Е.В. Бизенкова М.Н. Источники образования свободных радикалов и их значение в биологических системах в условиях нормы/ Н.П. Чеснокова, Е.В. Понукалина, М.Н. Бизенкова // Современные наукоемкие технологии. 2006. №6. С. 28-34.

- 68. Шаповалов, С.О. Показатели переваримости питательных и использования минеральных веществ комбикорма у кур-несушек при введении в рацион антистрессовой добавки / Николаев С.И., Даниленко И.Ю., Корнилова Е.В., Шаповалов С.О.//в сборнике: Селекционные и технологические аспекты интенсификации производства продуктов животноводства. по Материалам Всероссийской научно-практической конференции с международным участием, посвященной 150-летию со дня рождения академика М.Ф. Иванова. 2022. С. 259-264.
- 69. Abdelkarim Guaadaoui What is a bioactive compound? A combined definition for a preliminary consensus / Abdelkarim Guaadaoui, Soumaya Benaicha, Naima Elmajdoub, Mohammed Bellaoui, Abdellah Hamal// International Journal of Nutrition and Food Sciences 2014; 3(3): 174-179 Published online May 20, 2014 (http://www.sciencepublishinggroup.com/j/ijnfs) doi: 10.11648/j.ijnfs.20140303.16 [1 лит]
- 70. Adil S, Banday T, Bhat GA, Mir MS, Rehman M. Effect of Dietary Supplementation of Organic Acids on Performance, Intestinal Histomorphology, and Serum Biochemistry of Broiler Chicken. Vet Med Int 2010; 1-7.
- 71. AkselB; A brief review on bioactive compounds in plants. In: Bioactive compounds in plants benefits and risks for man and animals. Oslo: The Norwegian Academy of Science and Letters, 2010: 11-17. [11 лит]
- 72. Álvarez Perdomo, GR, Arana Manjarres RS, Franco Cedeño FJ, Zambrano Barros NA, Cangá Morán EE, Ramírez De La Ribera, JL, & Chacón Marcheco E. Empleo de acidificantes intestinales en la producciónde pollos de ceba. Revista Electronica de Veterinaria, 2017; 18(12):1-9.
- 73. Anne P and Hannu K; Bioactive Peptides and Proteins. Advances in food and nutrition research, 2003, 47: 175- 276. [39 лит]
- 74. Ares JJ, Outt PE. Gastroprotective agents for the prevention of NSAID-induced gastropathy.// Curr Pharm Des 1998. -№4. P.7-36
- 75. Arseniyadis S and CossyJ; Modern Tools for the Synthesis of Complex Bioactive Molecules (1st Ed), John Wiley & Sons, 2012: 581p. [49 лит]

- 76. Asima Bhattacharyya, Ranajoy Chattopadhyay, Sankar Mitra, and Sheila E. Crowe Oxidative Stress: An Essential Factor in the Pathogenesis of Gastrointestinal Mucosal Diseases // Physiol Rev. 2014. №2. C. 329-354.
- 77. Barrera Barrera HM, Rodríguez González SP, y Torres Vidales G. Efectos de la adición de ácido cítrico y un probiótico comercial en el agua de bebida, sobre la morfometría del duodeno y parámetros zootécnicos en pollo de engorde. Orinoquia, 2014;18(2):52-62.
- 78. BeritSP;Highlights through the history of plant medicine. In: Bioactive compounds in plants benefits and risks for man and animals. Oslo: The Norwegian Academy of Science and Letters, 2010: 23. [48 лит]
- 79. Bertsch A, y Dominguez G. Caracterización de Aditivos Enzimáticos Obtenidos por Monocultivo (Aspergillus niger) y Cocultivo (Aspergillus niger-Saccharomyces cerevisiae) y su Efecto sobre el Comportamiento Productivo de Pollos de Engorde. Revista de La Facultad de Ciencias Veterinarias UCV, 2010; 51(1):27-35.
- 80. Blajiman JE, Zbrun MV, Astesana DM, Berisvil AP, Scharpen AR, Fusari MR, Soto LP, Signorini MM, Rosmini MR, Frizzo LS. Probióticos en pollos parrilleros: una estrategia para los modelos productivos intensivos. Revista Argentina de Microbiologia, 2015; 47(4):360-367.
- 81. Carolina Kist Traesel Essential oils as substitutes for antibiotic growth promoters in broilers: soroproteins profile and lipid peroxidation/ Carolina Kist Traesel, Sonia Terezinha dos Anjos Lopes, Patricia Wolkmer, Candice Schmidt, Janio Morais Santurio // Clínica e Cirurgia Cienc. Rural 41 (2) Fev 2011
- 82. Chotikatum S, Kramomthong I, Angkanaporn K. Effects of medium chain fatty acids, organic acids and fructo-oligosaccharide on cecal Salmonella enteritidis colonization and intestinal parameters of broilers. Thai J Vet Med 2009; 39(3): 245-258.
- 83. Comalada Mònica et al. Inhibition of pro-inflammatory markers in primary bone marrow-derived mouse macrophages by naturally occurring flavonoids: Analysis of the structure-activity relationship PubMed November 2006 Biochemical Pharmacology 72(8):1010-21 DOI:10.1016/j.bcp.2006.07.016

- 84. Devvrat Kosti, D. S. Dahiya, Rajesh Dalal, B. S. Tewatia & Kennady Vijayalakshmy (2020) Role of turmeric supplementation on production, physical and biochemical parameters in laying hens, World's Poultry Science Journal, 76:3, 625-637, DOI: 10.1080/00439339.2020.1764460)
- 85. Dias J, et al. Accidental spinal potassium chloride injection successfully treated with spinal lavage. Anaesthesia. 2013;69(1):72–6
- 86. Díaz Pulido, C y González Manzano, Y. (2023). Expresión de genes y actividad de enzimas antioxidantes en pollos de engorde alimentados con inclusión de extracto de té verde y semilla de uva. Universidad de Ciencias Aplicadas y Ambientales.
- 87. Dibner JJ & Buttin P. Use of Organic Acids as a Model to Study the Impact of Gut Microflora on Nutrition and Metabolism. J Appl Poult Res 2002; 11: 453-463. https://doi.org/10.1093/japr/1L4.453
- 88. Elga Š and al.; Sea Buckthorn Vegetative Parts A Good Source of Bioactive Compounds, Proceedings of the Latvian Academy of Sciences. Section B. Natural, Exact, and Applied Sciences, 2013, 2(67): 101-108. [44 лит]
- 89. Emadi, M., & Kermanshahi, H. (2007). Effect of turmeric rhizome pow-der on the activity of some blood enzymes in broiler chickens. International Journal of Poultry Science, 6, 48–51
- 90. Esmaeilipour O, Shivazad, M, Moravej H, Aminzadeh S, Rezaian M, van Krimpen MM. Effects of xylanase and citric acid on the performance, nutrient retention, and characteristics of gastrointestinal tract of broilers fed low-phosphorus wheat-based diets. Poult Sci 2011; 90(9):1975-1982. https://doi.org/10.3382/ps.2010-01264
- 91. Estevez, M.; Petracci, M. Benefits of Magnesium Supplementation to Broiler Subjected to Dietary and Heat Stress: Improved Redox Status, Breast Quality and Decreased Myopathy Incidence. Antioxidants 2019, 8, 10.
- 92. Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill Jr AH, Murphy RC, Raetz CR,Russell DW, Seyama Y, Shaw W, Shimizu T. A comprehensive classification system for lipids. Eur J Lipid Sci Technol. 2005;107(5):337–64.

- 93. Flores Delgado, Angie Anahi Orégano, cúrcuma y ajo en dietas de pollo de engorde como mejoradores del sistema inmune y crecimiento Attribution-NonCommercial-ShareAlike 4.0 International (CC BY-NC-SA 4.0) 2023-02-08T14:36:54Z
- 94. Galli G.M., Da Silva A.S., Biazus A.H., Reis J.H., Boiago M.M., Topazio J.P., Migliorini M.J., Guarda N.S., Moresco R.N., Ourique A.F., Santos C.G., Lopes L.S., Baldissera M.D., Stefani L.M. Feed addition of curcumin to laying hens showed anticoccidial effect, and improved egg quality and animal health. //Res. Vet. Sci. 2018, Jun., 118, 101-106. doi: 10.1016/j.rvsc.2018.01.022
- 95. Garg, S.K., Shukla, A., Choudhury, S. (2019). Polyphenols and Flavonoids. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_13
- 96. Gonzalo Villar-Patiño, Antonio Díaz-Cruz, Ernesto Avila-González, Raquel Guinzberg, José L Pablos, Enrique Piña Effects of dietary supplementation with vitamin C or vitamin E on cardiac lipid peroxidation and growth performance in broilers at risk of developing ascites syndrome Am J Vet Res.- 2002 May;63(5):673-6. doi:10.2460/ajvr.2002.63.673.
- 97. Gould K.S., Lister C. Andesen O.M., Markham K.R. Flavonoid functions in plants. //Chemistry, biochemistry and applications, Boca Raton.- №8.-P. 397–441.
- 98. Gulçin I. Antioxidant activity of food constituents: an overview/ Mehmet Ali Temiz, Atilla Temur, İsmail Çelik// Journal of Food and Nutrition Research. 2015, Vol. 3 No. 1, 57-61 DOI: 10.12691/jfnr-3-1-10
 - 99. Gurjeet S Kohli1, Uwe John, Frances M Van Dolah and Shauna A Murray Evolutionary distinctiveness of fatty acid and polyketide synthesis in eukaryotes// The ISME Journal (2016), 1–14 International Society for Microbial Ecology All rights reserved 1751-7362/16
- 100. Halliwell B. How to characterize an antioxidant: an update //Biochem soc symp 1995. -№ 61. –P. 73-101.
- 101. Hassan HMA, Mohamed MA, Youssef AW, & Hassan ER. Effect of using organic acids to substitute antibiotic growth promoters on performance and intestinal

- microflora of broilers. Asian-Aust J Anim Sci 2011; 23(10): 1348-1353. https://doi.org/10.5713/ajas.2010.10085
- 102. Hernández F, García V, Madrid J, Orengo J, Catalá P, & Megías MD. Effect of formic acid on performance, digestibility, intestinal histomorphology and plasma metabolite levels of broiler chickens. Br Poult Sci 2006; 47(1):50-56. https://doi.org/10.1080/00071660500475574
- 103. Hernández-Ledesma B et al.; β-Lactoglobulin as source of bioactive peptides. Amino Acids, 2008, 35(2): 257-265. [63 лит]
- 104. Hu R.; He, Y.; Arowolo, M.A.; Wu, S.; He, J. Polyphenols as Potential Attenuators of Heat Stress in Poultry Production. Antioxidants 2019, 8, 3.
- 105. Islam M, Khandaker Z, Chowdhury S, & Islam K. Effect of citric acid and acetic acid on the performance of broilers. J Bangladesh Agril Uni, 2010; 6(2): 315-320.
- 106. Jaiganesh R and Sampath-Kumar NS; Marine bacterial sources of bioactive compounds. Advances in food and nutrition research, 2012, 65: 389. [30 лит]
- 107. Kali A., Bhuvaneshwar D., Charles P.M., Seetha K.S. Antibacterial synergy of curcumin with antibiotics against biofilm producing clinical bacterial isolates. //J. Basic. Clin. Pharm. 2016, Jun., 7(3), 93-96. doi: 10.4103/0976-0105.183265.
- 108. KarlovskyP; Secondary Metabolites in Soil Ecology, Part II Bacterial Metabolites, Springer, 2008: 93-127. [26 лит]
- 109. Keizo A and MotokoO; Bioactive Compounds in Meat (Chapter 11). Meat Biotechnology, Springer, 2008: 231–249. International Journal of Nutrition and Food Sciences 2014; 3(3): 174-179 179 [37 лит]
- 110. Kevin D. O'Brien, Thomas O. McDonald, Vidya Kunjathoor, KimLi Eng, Eleanor A. Knopp, Katherine Lewis, Roland Lopez, Elizabeth A. Kirk, Alan Chait, Thomas N. Wight, Frederick C. deBeer, and Renee C. LeBoeuf Serum Amyloid A and Lipoprotein Retention in Murine Models of Atherosclerosis// Arteriosclerosis, Thrombosis, and Vascular Biology. 2005. Volume 25, Number 4 https://doi.org/10.1161/01.ATV.0000158383.65277.2b

- 111. Kim DW, Kim JH, Kang HK, Akter N, Kim MJ, Na JC, Salim HM. Dietary supplementation of phenyllactic acid on growth performance, immune response, cecal microbial population, and meat quality attributes of broiler chickens. J. Appl. Poult 2014; 23: 661-670.
- 112. Kim JW, Kim JH, Kil, DY. Dietary organic acids for broiler chickens: a review. Колумбийский журнал животноводческих наук. Rev Colom Cienc Pecua 2015; 28(2): 109-123.
- 113. Kolkhir V.K., Tyukavkina N.A., Bykov V.A., and other. Dihydroquercetin new antioxidant and capillary protector. //Chemical & pharmaceutical periodical, 1995, No. 9, p. 61-64.
- 114. Kris-Etherton PM and al.;Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. American Journal of Medicine. 2002, 113(Suppl 9B): 71S-88S. [20 лит]
- 115. Kuzmina N.N. et al 2021 IOP Conf. Ser.: Earth Environ. Sci. 935 012015 DOI 10.1088/1755-1315/935/1/012015)
- 116. Lara Bordin Fernandes I, Batista Vieira Silva Gouveia A, Custódio Lamounier de Assis J, Maria Barbosa Melo A, Maria Vilas Boas Morais A, Silva Souza C, Alves Sampaio S, Ramos dos Santos F, Silva Minafra C Óleo de linhaça e óleo de coco na alimentação de frangos de corte//The Internationa 1 Seven Multidisciplinary Journal (ISMJ) is linked to Seven Publicações Ltda, CNPJ: 43.789.355/0001-14 v. 2 n. 1 (2023): January/February- 2023 DOI: 10.56238/isevmjv2n1-007
- 117. Liu RH; Health-promoting components of fruits and vegetables in the diet. Advances in Nutrition, 2013, 4(3): 384S-392S. [60 лит]
- 118. López Acevedo EA, Aguirre Guzmán G, y Vázquez Sauceda M.. Probióticos, una herramienta en la producción pecuaria y acuícola. Scientia Agropecuaria, 2013; 4:129-137.
- 119. Marchiori, M.S Curcumin in the diet of quail in cold stress improves performance and egg quality/ M.S. Marchiori, R.C.Oliveira, C.F. Souza, M.D. Baldissera, Q.M. Ribeiro, R.Wagner, S.S.Gundel, A.F. Ourique, J.K. Kirinus, L.M.

- Stefani, M.M. Boiago, A.S. da Silva// Amin. Feed Sci. Technol. 2019. V. 254. P.114192. DOI: 10.1016/j. anifeedsci.2019.05.015
- 120. Mennen L.I., Sapinho D., Ito H., Galan P., Hercberg S., Scalbert A. (2008) Urinary excretion of 13 dietary flavonoids and phenolic acids in free-living healthy subjects − variability and possible use as biomarkers of polyphenol intake. // Eur.J.Clin.Nutr.-2008. -№ 62.- P. 519–525
- 121. Miguel et "The curcuma antioxidants:Pharmacological effects and prospects for future clinical use. A Review" Archives of Gerontology and Geriatrics 34: 37-46. doi:10.1016/S0167-4943(01)00194-7
- 122. Moon, J., Lee, S., Do, H. J., Cho, Y, Chung, J. H, and Shin, M. J. (2012). Quercetin up-regulates LDL receptor expression in HepG2 cells. Phytotherapy Research. 26(11): 1688-1694.
- 123. Murakami, Karline Tikae Tani. Óleo de linhaça como principal fonte lipídica na dieta de frangos de corte. 2009. 63 f. Dissertação (mestrado) Universidade Estadual Paulista, Faculdade de Odontologia e Curso de Medicina Veterinária, 2009.
- 124. NahlerG; Dictionary of Pharmaceutical Medicine (3rd Ed), B letter, Springer-Verlag Wien, 2013: 19-28. [18 лит]
- 125. Namagirilakshmi et all "Turmeric (Curcuma Longa) as an alternative to in feed antibiotic on the Gut health of broiler chickens" Tamilnadu journal of veterinary and animal sciences 6:148-150,2010
- 126. Niels PM et al.; Bioactive peptides and proteins from foods: indication for health effects, European Journal of Nutrition, 2008, 47:171–182. [62 лит]
- 127. Oladeji O.S., Oluyori A.P., Bankole D.T., Afolabi T.Y. Natural Products as Sources of Antimalarial Drugs: Ethnobotanical and Ethnopharmacological Studies. //Scientifica (Cairo). 2020, May 9, 2020:7076139. doi:10.1155/2020/7076139.
- 128. Ortega R.M., Pérez J.F., Bulto S.L., Quesada E.M. Prejuicios y verdades sobre las grasas y otros alimentos. Sociedad Española de Dietética y Ciencias de la Alimentación

- 129. Palu A.O., Pico K.S., Bonet P.M.L., Serra V.F., Oliver V.P., Rodriguez G.A.Ma, et al. Libro blanco sobre las grasas en la nutrición funcional. España. Unilever España. 5-30.
- 130. Panda AK, Rao SVR, Raju MVLN, & Sunder GS. Effect of butyric acid on performance, gastrointestinal tract health and carcass characteristics in broiler chickens. Asian-Australas J Anim Sci 2009; 22(7): 1026-1031 //doi.org/10.5713/ajas.2009.80298
- 131. Paz Segóvia Camila Michel; Usando diferentes doses de cúrcuma (Curcuma longa) 0,5; 1 e 1,5% para pigmentação da carne de frango. UTC. Latacunga. 179 pág. Equador, Latacunga: Universidade Técnica de Cotopaxi (UTC). Setembro de 2020
- 132. Pedra A.M., I. Zhiram. Guias de nutrição para o ensino de nutrição na Costa Rica. Ministério da Saúde da Costa Rica
- 133. Peter F. Surai Antioxidants in Poultry Nutrition and Reproduction//doi.org/10.3390/antiox9020105/2020
- 134. Pirgozliev V, Murphy TC, Owens B, George J & McCann MEE. Fumaric and sorbic acid as additives in broiler feed. Res Vet Sci 2008; 84(3): 387-394. doi.org/10.1016/j.rvsc.2007.06.010
- 135. Potença, Alexandra Fontes de lipídios na alimentação de frangos de corte// Universidade Estadual de Maringá. 2008. p.45
- 136. Puthpongsiriporn U, Scheideler SE, Sell JL, Beck MM. Effects of vitamin E and C supplementation on performance, in vitrolymphocyte proliferation, and antioxidant status of laying hensduring heat stress. Poultry Science 2001; 80:1190-1200
- 137. Radoslavov V. et al. Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. 2021.
- 138. Rajput , N., Muhammad, N., Yan, R., Zhong, X., & Wang, T. (2013). Effect of dietar y supplementation of curcumin on grow th performance, intestinal morphology and nutrients utilization of broiler chicks. The Journal of Poultry Science, 50, 44–52

- 139. Saeed M, Naveed M et al,2017 World's poultry science journal 2017,vol. 73,No.2,355-364, doi.org/10.1017/S004393391700023X
- 140. Sánchez Cubas, Reyna Leonor Efecto de varios niveles dietarios de cúrcuma (Cúrcuma Longa Linn) en el comportamiento productivo de pollos de carne COBB 500// TESIS Para optar el Título Profesional de: MEDICA VETERINARIA . Lambayeque- Perú 2019
- 141. Shahidi, F. and Ambigaipalan, P. (2015). Phenolics and polyphenolics in foods, beverages and spices: Antioxidant activity and health effects- A review. Journal of Functional Foods. 18:820-897.
- 142. Shin, H. S., Yoo, J. H., Min, T. S., Lee, K. Y., and Choi, C. Y. (2010). The effects of quercetin on physiological characteristics and oxidative stress resistance in olive flounder, Paralichtys olivaceus. Asian Australasian Journal of Animal Sciences. 23(5): 588-597.
- 143. Surai P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Physiol. Anim. Nutr. 2014, 98, 19–31.
- 144. Susana Chamorro Impact of a sustained consumption of grape extract on digestion, gut microbial metabolism and intestinal barrier in broiler chickens / Susana Chamorro, Carlos Romero, Agustín Brenes, Fernando Sánchez-Patán, Begoña Bartolomé, Agustín Viveros and Ignacio Arija// Food Funct., 2019, 10, 1444-1454 DOI: 10.1039/C8FO02465K [134 лит])
- 145. Talebi E, Zarei A & Abolfathi M. Influence of three Different Organic Acids on Broiler Perfonrmance. Asian J Poult Sci 2010; 4(1): 7-11.
- 146. Teixeira, M. de P. F. Abreu, M. L. T. de; Almendra, S. N. de O.; Lopes, J. B.; Silva, S. R. G. da; Nascimento, T. P.; Sousa, T. de O. Vitamin C in diets of broiler in cyclic heat stress. Research, Society and Development, [S. 1.], v. 12, n. 7, p. e7012742484, 2023. DOI: 10.33448/rsd-v12i7.42484. Acesso em: 18 nov. 2023.
- 147. Temiraev R.B. The influence of diets enriched with vitamin E and Hadox preparation on the meat productivity of quails/ Temiraev R.B., Farnieva, M.Z. // Feeding of farm animals and fodder production.- 2020.-№ 3.- p. 51-68.

- 148. The substitution of feed addive "Vinivet" based on apicultural products for antibiotic growth promoters in diets for poultry/ Elena Andrianova, Ivan Egorov, Larisa Prisyahnaya, Liliya Akhmetova, Jalil sibgatulin, Dmitry Efimov// The Proceeding of XXV World's Poultry Congress. Abstracts /-September 5-9,2016.-Beijing, China. P 17.
- 149. Tsogoev, N.D. et al. The use of environmentally friendly biological products in the nutrition of broiler chickens. Bulletin of MANEB. 2002.- № 9. p. 125-127.
- 150. Uauy R. Gerber M. Grasas y ácidos grasos en la nutrición humana. Consulta de expertos. Estudio de la FAO sobre alimentación y nutrición. 2012.
- 151. Vieira SL, Oyarzabal OA, Freitas DM, Berres J, Peña JEM, Torres CA, & Coneglian JLB. Performance of broilers fed diets supplemented with sanguinarine-like alkaloids and organic acids. Journal of Appl Poult Res 2008; 17(1): 128-133. doi.org/10.3382/japr.2007-00054
- 152. Vlahova-Vangelova,Desislava Borislavovaand Balev,Desislav Kostadinovand Dragoev,Stefan Georgievand Dinkova,Rada Hristova, 20220224401, Bulgaria, 24, (5), Troyan, Journal of Mountain Agriculture on the Balkans, (81–92), Research Institute of Mountain Stockbreeding and Agriculture, Oxidative changes in frozen poultry enriched with biological active components. 24 May 2022
- 153. Walzem RL et al.; Whey components: millennia of evolution create functionalities for mammalian nutrition: what we know and what we may be overlooking. Critical Reviews in Food Science and Nutrition, 2002, 42: 353–375. [61 лит]
- 154. Wickramasuriya, S. S. Role of Physiology, Immunity, Microbiota, and Infectious Diseases in the Gut Health of Poultry / S. S. Wickramasuriya, I. Park, K. 146 Lee, Y. Lee, W. H. Kim, H. Nam, H. S. Lillehoj // Vaccines. 2022. Vols. 10, №2. p. 172. https://doi.org/10.3390/vaccines10020172.
- 155. Williamson G, Manach C. Bioavailability and bioefficacy of polyphenols in humans. II. Review of 97 bioavailability studies. Am J Clin Nutr 81, 243S-255S

ПРИЛОЖЕНИЯ

Приложение А.1.- Состав и питательность комбикормов контрольной группы для цыплят-бройлеров, % (опыт 1)

Компонент	Период выращивания, суток				
ROMHOHEH1	3-21	22-38			
Пшеница	54,572	58,145			
Соя полуобезжиренная 40%	15,000	24,471			
Соевый шрот 44%	13,628	-			
Масло подсолнечное	4,804	4,850			
Жмых подсолнечный 32%	4,000	7,000			
Мука рыбная	4,000	2,000			
Монокальцийфосфат	1,098	0,916			
Известняк Са 36%	0,926	1,123			
Метионин	0,314	0,262			
Монохлоргидрат лизина	0,294	0,313			
Соль	0,269	0,325			
Премикс	1,000	0,500			
Холин хлорид	0,080	0,080			
Фекорд	0,015	0,015			
В 100 г ком	мбикорма содержится, %				
Обменная энергия, ккал	310,00	320,00			
МДж	1,30	1,34			
Протеин сырой	23,00	21,00			
Сырая клетчатка	3,55	4,20			
Сырой жир	8,02	8,88			
Сырая зола	4,65	4,15			
Лизин	1,38	1,22			
Метионин	0,67	0,59			
Метионин + цистин	1,04	0,95			
Треонин	0,79	0,70			
Триптофан	0,29	0,26			
Аргинин	1,46	1,36			
Лизин усв.	1,23	1,09			
Метионин усв.	0,64	0,56			
Метионин + цистин усв.	0,93	0,84			
Треонин усв.	0,66	0,59			
Триптофан усв.	0,29	0,22			
Аргинин усв.	1,28	1,17			
Ca	0,96	0,90			
Р общий	0,76	0,68			
Р дост.	0,48	0,40			
Na	0,16	0,16			
K	0,90	0,86			
Cl	0,29	0,31			

Приложение А.2. - Состав витаминно-минерального премикса в расчете на 1 т корма

Витамины	Содержание на 1 т корма	Единица измерения
A	12,0	Млн.МЕ
D_3	4,0	Млн.МЕ
Е	48,0	Γ
K_3	2,4	Γ
B_1	3,2	Γ
B_2	12	Γ
B_3	16	Γ
B_{5}	80	Γ
B_4	4,8	Γ
B_{12}	32	МΓ
B_{c}	3,2	Γ
Н	0,4	Γ
Микроэлементы		
Марганец	120,0	Γ
Цинк	100,0	Γ
Медь	2,5	Γ
Железо	25,0	Γ
Кобальт	1,0	Γ
Йод	0,7	Γ
Селен	200,0	МГ

Приложение А.3 - Состав и питательность комбикормов контрольной группы для цыплят-бройлеров, % (опыт 2)

Компонент	Период выращивания, сут		
Komilohehi	3-21	22-38	
Кукуруза	29,0	-	
Шрот соевый 44%	21	1	
Пшеница	19,3	56,5	
Соя тостированная 34%	15	25	
Жмых подсолнечный 30%	4	7	
Мука рыбная 63%	4	4,2	
Масло подсолнечное	4,0	4,1	
Известняковая мука	1,2	1,3	
Монокальций фосфат	0,8	0,8	
DL-Метионин	0,27	0,27	
Монохлоргидрат лизина	0,11	0,2	
Соль поваренная	0,24	0,3	
Премикс 1%	1,0	0,5	
Фермент «Фекорд»	0,015	0,2	
Витамин В4	0,08	-	
В 100 г ко	мбикорма содержится, %	•	
Обменной энергии, ккал	315	322,00	
МДж	1,32	1,35	
Сырого протеина	23	21,38	
Сырой клетчатки	4,48	4,16	
Сырая зола	5,82	5,25	
Аргинин	1,51	1,35	
Метионин усв.	0,59	0,61	
Триптофан усв.	0,23	0,25	
Na	0,16	0,17	
Лизин усв.	1,18	1,10	
Cl	0,23	0,31	
К	0,88	0,73	
P	0,68	0,69	
DEB	22,97	17,63	
Р усв.	0,44	0,41	
Лизина	1,36	1,25	
Метионина	0,64	0,56	
Метионин+цистеин усв.	0,87	0,8	
Метионин+цистин	0,99	0,91	
Ca	0,9	0,9	
Треонина	0,86	0,75	
Линолевая кислота	4,52	5,68	
Жир сырой	9,28	11,23	

Приложение А.4 - Состав и питательность комбикормов контрольной группы для цыплят-бройлеров, % (опыт 3)

	Период выращивания, суток			
Компонент	3-21	22-38		
Кукуруза 8,5%	30,0	12,41		
Соя полуобезжиренная 40%	20,0	27,50		
Пшеница	19,74	39,21		
Соевый шрот 44%	9,0	-		
Жмых подсолнечный 32%	9,00	9,03		
Мука рыбная	4,70	2,50		
Масло подсолнечное	3,75	5,13		
Известняк Са 36%	1,55	1,66		
Монокальцийфосфат	0,68	1,06		
Премикс	0,5	0,5		
Монохлоргидрат лизина	0,37	-		
Метионин	0,31	0,20		
Соль	0,27	0,30		
Треонин	0,13	0,11		
Фекорд	0,015	0,015		
Лизин сульфат	-	0,30		
Холин хлорид	-	0,08		
В 100 г ко	омбикорма содержится, %	:		
Обменная энергия, ккал	310,00	320		
Обменная энергия, МДж.	1,3	1,34		
Протеин сырой	23,18	20,11		
Сырая клетчатка	4,69	4,33		
Сырой жир	10,73	11,63		
Сырая зола	4,42	3,93		
Лизин	1,40	1,17		
Метионин	0,68	0,55		
Метионин + цистин	0,98	0,85		
Треонин	0,94	0,80		
Триптофан	0,27	0,23		
Аргинин	1,50	1,22		
Лизин усв.	1,31	1,10		
Метионин усв.	0,65	0,49		
Метионин + цистин усв.	0,92	0,72		
Треонин усв.	0,71	0,54		
Триптофан усв.	0,22	0,18		

Аргинин усв.	1,27	1,03
Ca	1,00	0,90
Р общий	0,69	0,66
Р дост.		0,40
Na	0,18	0,14
K	0,78	0,72
Cl	0,30	0,31
Линолевая кислота	5,80	1,59

Приложение А.5.

Для приготовления мазка-отпечатка из поверхностного слоя (на глубине 2—3 см) стерильными ножницами или скальпелем вырезают кусочек мяса массой 2—3 г, прикладывают его внутренней срезанной стороной к предварительно профламбированной поверхности предметного стекла.

Приготовленные на предметных стеклах мазки-отпечатки необходимо высушить на воздухе, зафиксировать в пламени горелки или спиртовки и окрасить по методу Грамма. Каждый мазок-отпечаток просмотреть под микроскопом с иммерсионным объективом не менее чем в 25 разных полях зрения.

При микроскопировании в каждом просмотренном поле зрения подсчитывают отдельно число клеток бактерий (кокков и палочек) и дрожжей, результатом является среднее значение общего количества клеток по двадцати пяти полям зрения. В поле зрения микроскопа отмечается также наличие или отсутствие следов распада мышечной ткани.

Результаты микроскопирования оценивали в соответствии с данными, представленными в таблице 2.4.

168

Оценка результатов бактериоскопического анализа мяса

Характеристика мяса	Микроскопическая картина
Свежее	Отсутствуют микробные клетки или видны единичные кокки и дрожжи (до 10 клеток); следов распада мышечной ткани нет
С частично измененной свежестью	Не более 30 кокков, дрожжей или палочковидных клеток; заметны следы распада мышечной ткани (ядра мышечных волокон в состоянии распада, исчерченность мышечных волокон слабо различима)
Несвежее	Более 30 микробных клеток с преобладанием палочковидных форм; наблюдается значительный распад мышечной ткани, почти полное исчезновение ядер и исчерченности мышечных волокон

Приложение Аб. - Состав и питательность комбикормов контрольной группы для цыплят-бройлеров, %

	1-6 дней	7-21 дней	22-35 дней
Пшеница	34,5	34,5	32,1
Кукуруза 8,5%	25,0	25,0	25,0
Соя полуобезжиренная 40%			12,0
Соевый шрот 44%	27,0	27,0	20,0
Масло подсолнечное	4,0	4,0	5,3
Мука рыбная	6,60	6,60	2,0
Монокальцийфосфат	0,6	0,6	1,0
Известняк Са 36%	1,1	1,1	1,4
Премикс	0,5	0,5	0,5
Метионин	0,30	0,30	0,30
Монохлоргидрат лизина		0,16	0,11
Лизин сульфат	0,22		
Соль	0,21	0,21	0,33
Фекорд	0,015	0,015	0,015
В 100 г комбикор	ма содержится, %	•	
Обменная энергия, ккал	307,00	317,00	320,00
Обменная энергия, МДж.	1,285	1,327	1,34
Протеин сырой	22,73	22,84	20,31
Сырая клетчатка	3,40	3,42	3,67
Сырой жир	6,39	6,44	9,21
Сырая зола	5,52	5,55	5,67
Лизин	1,41	1,40	1,17
Метионин	0,69	0,69	0,60
Метионин + цистин	1,01	1,02	0,91
Треонин	0,83	0,84	0,74
Триптофан	0,28	0,28	0,25
Аргинин	1,39	1,40	1,29
Лизин усв.	1,24	1,24	1,01
Метионин усв.	0,64	0,64	0,56
Метионин + цистин усв.	0,91	0,92	0,81
Треонин усв.	0,72	0,72	0,62
Триптофан усв.	0,24	0,24	0,20
Ca	0,91	0,91	0,89
Р общий	0,66	0,66	0,66
Р дост.	0,44	0,44	0,43
Na	0,17	0,17	0,17
K	0,80	0,81	0,81
Cl	0,21	0,24	0,27

Приложение А.6 – Состав и питательность комбикормов контрольной группы для цыплят-бройлеров, %

	1-6 дней	7-21 дней	22-35 дней
Пшеница	34,5	34,5	32,1
Кукуруза 8,5%	25,0	25,0	25,0
Соя полуобезжиренная 40%			12,0
Соевый шрот 44%	27,0	27,0	20,0
Масло подсолнечное	4,0	4,0	5,3
Мука рыбная	6,60	6,60	2,0
Монокальцийфосфат	0,6	0,6	1,0
Известняк Са 36%	1,1	1,1	1,4
Премикс	0,5	0,5	0,5
Метионин	0,30	0,30	0,30
Монохлоргидрат лизина		0,16	0,11
Лизин сульфат	0,22		
Соль	0,21	0,21	0,33
Фекорд	0,015	0,015	0,015
_	ма содержится, %	· ·	
Обменная энергия, ккал	307,00	317,00	320,00
Обменная энергия, МДж.	1,285	1,327	1,34
Протеин сырой	22,73	22,84	20,31
Сырая клетчатка	3,40	3,42	3,67
Сырой жир	6,39	6,44	9,21
Сырая зола	5,52	5,55	5,67
Лизин	1,41	1,40	1,17
Метионин	0,69	0,69	0,60
Метионин + цистин	1,01	1,02	0,91
Треонин	0,83	0,84	0,74
Триптофан	0,28	0,28	0,25
Аргинин	1,39	1,40	1,29
Лизин усв.	1,24	1,24	1,01
Метионин усв.	0,64	0,64	0,56
Метионин + цистин усв.	0,91	0,92	0,81
Треонин усв.	0,72	0,72	0,62
Триптофан усв.	0,24	0,24	0,20
Ca	0,91	0,91	0,89
Р общий	0,66	0,66	0,66
Р дост.	0,44	0,44	0,43
Na	0,17	0,17	0,17
К	0,80	0,81	0,81
Cl	0,21	0,24	0,27

Приложение А7 - - Химический состав и содержание аминокислот в гомогенате грудных мышц бройлеров петушков, (% на возд. сухое вещество) (Опыт 1)

Показатель			Груг	nna		
	1(ĸ)	2	3	4	5	
Влага	70,72	69,40	68,66	66,77	68,66	
протеин	84,21	85,94	83,22	83,65	79,88	
жир	8,37	5,60	9,46	6,41	12,49	
зола	3,98	4,00	3,87	3,85	4,10	
Лизин	7,15	7,33	7,17	7,26	6,91	
Валин	4,28	4,36	4,24	4,33	3,96	
Метионин	2,16	2,25	2,19	2,21	2,16	
Изолейцин	3,90	4,03	3,94	4,03	3,73	
Лейцин	6,36	6,50	6,35	6,46	6,13	
Треонин	3,58	3,64	3,53	3,52	3,46	
Фенилаланин	3,23	3,27	3,17	3,21	3,13	
∑ незам. амин.	30,66	31,38	30,59	31,02	29,48	
Аланин	4,70	4,76	4,64	4,66	4,50	
Цистин	0,93	0,95	0,92	0,93	0,92	
Гистидин	3,19	3,43	3,35	3,15	2,68	
Аргинин	5,26	5,31	5,30	5,30	5,14	
Аспарагиновая к-та	7,35	7,55	7,32	7,42	7,07	
Тирозин	2,83	2,90	2,79	2,84	2,74	
Серин	2,94	3,05	2,97	2,98	3,03	
Глутаминовая к-та	11,76	12,03	11,65	11,93	11,75	
Пролин	2,99	3,06	2,98	3,03	3,13	
Глицин	3,53	3,51	3,44	3,48	3,63	

∑ замен. амин.	45,48	46,55	45,36	45,72	44,59	
Сумма аминокислот	76,14	77,93	75,95	76,74	74,07	

Химический состав и содержание аминокислот в гомогенате ножных мышц бройлеров петушков, (% на возд. сухое вещество) Опыт 1.

Показатель			Груг	nna		
	1(κ)	2	3	4	5	
Влага	71,45	72,13	74,64	70,69	68,05	
протеин	73,69	77,50	78,37	74,06	70,38	
жир	14,71	15,98	12,92	15,11	21,44	
зола	3,29	4,18	4,88	3,85	3,17	
Лизин	6,29	6,48	6,66	6,44	5,93	
Валин	3,58	3,66	3,81	3,62	3,39	
Метионин	2,08	2,06	0,08	2,00	1,88	
Изолейцин	3,35	3,48	3,59	3,45	3,21	
Лейцин	5,54	5,71	5,93	5,67	5,32	
Треонин	3,14	3,30	3,40	3,21	3,09	
Фенилаланин	2,90	3,02	3,09	2,92	2,79	
∑ незам. амин.	26,88	27,71	26,56	27,31	25,61	
Аланин	4,25	4,30	4,64	4,20	4,05	
Цистин	0,84	0,87	0,86	0,83	0,80	
Гистидин	2,28	2,41	2,54	2,32	2,08	
Аргинин	4,68	4,88	5,18	4,81	4,53	
Аспарагиновая к-та	6,44	6,62	7,02	6,48	6,21	
Тирозин	2,49	2,60	2,66	2,48	2,39	
Серин	2,81	2,89	3,03	2,80	2,76	

Глутаминовая к-та	10,96	11,22	11,78	10,93	10,70	
Пролин	3,02	3,02	3,48	2,94	3,00	
Пролип	3,02	3,02	3,40	2,74	3,00	
Глицин	3,75	3,70	4,34	3,54	3,62	
∑ замен. амин.	41,52	42,51	45,53	41,33	40,14	
Сумма аминокислот	68,4	70,22	72,09	68,64	65,75	

Химический состав и содержание аминокислот в гомогенате грудных мышц бройлеров курочек, (% на возд. сухое вещество) Опыт 1

1				
1(ĸ)	2	3	4	5
73,35	74,00	75,48	73,58	73,76
83,04	84,93	84,30	85,43	85,99
6,74	6,60	8,21	6,98	5,56
4,64	4,20	4,49	4,47	4,05
7,34	7,28	7,20	4,45	7,48
4,37	4,37	4,32	4,34	4,44
2,20	2,22	2,26	2,25	2,31
4,04	4,03	4,04	4,04	4,15
6,55	6,59	6,52	6,59	6,72
3,72	3,71	3,74	3,72	3,80
3,39	3,33	3,26	3,36	3,38
31,61	31,53	31,34	28,75	32,28
4,87	4,92	4,83	4,84	4,88
0,94	0,96	0,98	0,96	0,97
3,11	3,44	3,06	3,22	3,42
5,37	5,26	5,31	5,41	5,50
	73,35 83,04 6,74 4,64 7,34 4,37 2,20 4,04 6,55 3,72 3,39 31,61 4,87 0,94 3,11	73,35 74,00 83,04 84,93 6,74 6,60 4,64 4,20 7,34 7,28 4,37 4,37 2,20 2,22 4,04 4,03 6,55 6,59 3,72 3,71 3,39 3,33 31,61 31,53 4,87 4,92 0,94 0,96 3,11 3,44	73,35 74,00 75,48 83,04 84,93 84,30 6,74 6,60 8,21 4,64 4,20 4,49 7,34 7,28 7,20 4,37 4,37 4,32 2,20 2,22 2,26 4,04 4,03 4,04 6,55 6,59 6,52 3,72 3,71 3,74 3,39 3,33 3,26 31,61 31,53 31,34 4,87 4,92 4,83 0,94 0,96 0,98 3,11 3,44 3,06	73,35 74,00 75,48 73,58 83,04 84,93 84,30 85,43 6,74 6,60 8,21 6,98 4,64 4,20 4,49 4,47 7,34 7,28 7,20 4,45 4,37 4,37 4,32 4,34 2,20 2,22 2,26 2,25 4,04 4,03 4,04 4,04 6,55 6,59 6,52 6,59 3,72 3,71 3,74 3,72 3,39 3,33 3,26 3,36 31,61 31,53 31,34 28,75 4,87 4,92 4,83 4,84 0,94 0,96 0,98 0,96 3,11 3,44 3,06 3,22

Аспарагиновая к-та	7,65	7,67	7,69	7,73	7,91
Тирозин	3,03	2,89	2,82	2,93	2,96
Серин	3,19	3,17	3,18	3,12	3,22
Глутаминовая к-та	12,36	12,50	12,32	12,37	12,64
Пролин	2,87	2,90	3,01	2,98	3,14
Глицин	3,64	3,62	3,59	3,54	3,61
∑ замен. амин.	47,03	47,33	46,79	47,1	48,25
Сумма аминокислот	78,64	78,86	78,13	75,85	80,53

Химический состав и содержание аминокислот в гомогенате ножных мышц бройлеров курочек, (% на возд. сухое вещество) Опыт 1

	1(κ)	2	3	4	5
Влага	70,11	71,76	70,87	70,70	70,89
протеин	78,00	82,74	76,47	75,67	75,72
жир	12,89	7,42	15,38	10,78	15,75
зола	4,15	4,54	4,42	4,14	4,00
Лизин	6,66	7,28	6,70	6,36	6,60
Валин	3,94	4,11	3,84	3,68	3,75
Метионин	2,08	2,24	2,06	2,02	2,04
Изолейцин	3,71	3,94	3,67	3,51	3,56
Лейцин	6,09	6,52	6,04	5,86	5,87
Треонин	3,48	3,70	3,52	3,38	3,32
Фенилаланин	3,08	3,24	3,11	2,96	2,97
∑ незам. амин.	29,04	31,03	28,94	27,77	28,11
Аланин	4,64	4,84	4,49	4,43	4,38

Цистин	0,90	0,96	0,88	0.88	0,90
Гистидин	2,43	2,63	2,44	2,28	2,42
Аргинин	5,03	5,34	5,03	4,81	5,32
Аспарагиновая к-та	6,96	7,64	7,09	6,98	6,81
Тирозин	2,63	2,81	2,65	2,48	2,47
Серин	2,92	3,36	3,11	2,94	2,96
Глутаминовая к-та	12,05	13,22	11,88	11,91	11,58
Пролин	3,23	3,14	3,11	3,06	3,15
Глицин	3,91	3,85	3,73	3,72	3,85
∑ замен. амин.	47,03	47,33	46,79	47,1	48,25
Сумма аминокислот	76,07	78,36	75,73	74,87	76,36

Приложение А9

ОТЧЕТ

Изучение чувствительности патогенной микрофлоры к кормовым добавкам.

Исследование чувствительности патогенной микрофлоры к кормовым добавкам проведено в микробиологической лаборатории ООО "НВЦ Агроветзащита С-П." (лицензия на осуществление деятельности в области использования возбудителей инфекционных заболеваний человека и животных III-IV степени потенциальной опасности № 50.99.08.001.Л.000012.05.13 от 29.05.2013 г.).

Основной целью исследования стало сравнительное определение величин МПК (минимальной подавляющей концентрации) четырех образцов кормовых добавок на основе природных антиоксидантов.

Методика исследования. Исследования проведены в соответствии с рекомендациями Методических указаний «Определение чувствительности микроорганизмов к антибиотикам. МУК 4.2.1890-04» (макрометод серийных разведений в бульоне).

Объект исследования.

Образец №1 - мицеллированная форма двух природных антиоксидантов, разведенная водой до концентрации, используемой для выпаивания птице.

Образец №2 - мицеллированная форма одного природного антиоксиданта, разведенная водой до концентрации, используемой для выпаивания птице.

Образец №3 - нативная форма природного антиоксиданта.

Образец №4 – нативная форма двух природных антиоксидантов.

Тест-штаммы. В работе использованы культуры ПБА, представленные в таблице 1.

Таблица 1- Перечень культур ПБА, использованных в работе.

Тест-штамм	Источник получения				
S. aureus ATCC 6538P (FDA 209P)	Всероссийская Коллекция Промыш				
E. coli ATCC 25922	ленных микроорганизмов ФГУ				
P. aeruginosa ATCC 9027	«ГосНИИГенетика»				
Salmonella abony № 103/39	ЦЭК МИБП ФГБУ «НЦ ЭСМП»				
	Минздрава России				

Для инокуляции использовали свежие 24-х часовые культуры бактерий, выращенные в среде № 8, с определением инокулирующей дозы титрованием на среде №1 поверхностным методом.

Питательные среды.

Исследования проведены на средах производства ФБУН «ГНЦ прикладной микробиологии и биотехнологии» № 8 ГРМ, рег.уд. № ФСР 2007/00839 от 06.08.2021 г.; № 1 ГРМ, рег. уд. № ФСР 2011/11415 от 06.08.2021 г.

Подготовка испытуемых образцов.

Твердые испытуемые образцы разводили стерильной водой очищенной из расчета 1 г/мл. Далее, все образцы разводили двукратно на стерильной жидкой питательной среде $N \ge 8$ ГРМ (табл.2).

Таблица 2 - Разведение исследуемых препаратов

Концентрация препарата, %	100 (целое)	50	25	10	5	2,5
Объем препарата,	10	5	5	1	1	1
мл Среда №8, мл	-	5	5	9	9	9

Примечание: разведения 5:5 — последовательные, а 1:9, соответственно, из 100, 50 и 25 %-ных растворов.

Результаты исследования.

Титрование обогащенных культур тест-штаммов показало, что биологическая активность культур ПБА (концентрация живых бактериальных клеток) составила от $7x10^{10}$ до $1,2x10^{12}$ КОЕ/мл (табл. 3).

Таблица 3 – Результат определения биологической активности суточ-ных культур тест-штаммов

Тест-штамм	БА,
	КОЕ/мл
S. aureus	$2,0x10^{11}$
E. coli	$1,1x10^{11}$
Salmonella abony	$1,2x10^{12}$
P. aeruginosa	$7,0x10^{10}$

Для опыта использовали тест-микроорганизмы в концентрации 10^3 КОЕ/мл. Усредненные результаты оценки антимикробной активности препаратов по трем опытам представлены в табл. 4, 5.

Таблица 4 – Антимикробная активность исследуемых препаратов

ПБА	Объект	Концентрация препарата, %					
	исследовани	100	50	25	10	5	2,5
	Я						
S. aureus	Образец №1	-	+	+	+	+	+
	Образец №2	-	-	+	+	+	+
	Образец №3	-	-	+	+	+	+
	Образец №4	-	-	-	+	+	+

E. coli	Образец №1	+	+	+	+	+	+
	Образец №2	+	+	+	+	+	+
	Образец №3	+	+	+	+	+	+
	Образец №4	-	+	+	+	+	+
Salmonella	Образец №1	+	+	+	+	+	+
abony	Образец №2	+	+	+	+	+	+
	Образец №3	+	+	+	+	+	+
	Образец №4	+	+	+	+	+	+
P. aeruginosa	Образец №1	+	+	+	+	+	+
	Образец №2	+	+	+	+	+	+
	Образец №3	+	+	+	+	+	+
	Образец №4	+	+	+	+	+	+

Примечания: 1. Знак «+» означает рост культуры в пробирке, «-» отсутствие роста.

Таблица 5 – Минимальная подавляющая концентрация исследуемых препаратов

Тест-штамм	МПК препара	МПК препарата (%)					
	1	2	3	4			
S. aureus	100	50	50	25			
P. aeruginosa	Не	Не	Не	Не			
	обнаружено	обнаружено	обнаружено	обнаружено			
E. coli	He	Не	Не	100			
	обнаружено	обнаружено	обнаружено				
S. abony	Не	Не	Не	Не			
	обнаружено	обнаружено	обнаружено	обнаружено			

ЗАКЛЮЧЕНИЕ

- 1. Исследуемые препараты обладают выраженной антимикробной активностью по отношению к грамположительной (S. aureus) бактериальной микрофлоре.
- 2. Наибольшую активность проявляет в отношении S. aureus и E. coli образец N 4.

REINAGEILEO RANDENSOG

遊路路路路路

密密

器

器

密

掛

面

密

密

斑

斑

遊

遊

遊

遊

遊

磁

磁

器

掛

器

器

器

磨

斑

斑

遊

斑

掛

南路

器

器

器

器

MATERT

НА ИЗОБРЕТЕНИЕ

№ 2789178

Способ снижения окисления липидов в комбикормах и улучшения качества мяса цыплят-бройлеров при его хранении

Патентообладатель: Федеральное государственное бюджетное научное учреждение Федеральный научный центр "Всероссийский научно-исследовательский и технологический институт птицеводства" Российской академии наук (ФНЦ "ВНИТИП" РАН) (RU)

Авторы: Егоров Иван Афанасьевич (RU), Андрианова Елена Николаевна (RU), Демидова Екатерина Сергеевна (RU), Григорьева Елена Николаевна (RU)

Заявка № 2022118216

Приоритет изобретения 04 июля 2022 г. Дата государственной регистрации в Государственном реестре изобретений Российской Федерации 30 января 2023 г. Срок действия исключительного права на изобретение истекает 04 июля 2042 г.

> Руководитель Федеральной службы по интеллектуальной собственности

> > #-

Ю.С. Зубов

斑斑斑斑斑斑

崇

봻

器

器

密

爝

密

遊

斑

密

斑

斑

嶽

斑

斑

遊

遊

嶽

斑

遊

图

器

器器

器

资

路路路路

斑

斑

斑

斑

盛

掛

器器

REMULACINATION RANDIMINOSOCI

遊

磁

斑

遊

磁

斑

斑

遊

斑

瓣

磁

遊

斑

磁

嶽

器

嶽

磁

掛

器

器

掛

器

被

搡

磁

密

盎

磁

斑

密

磁

斑

斑斑

遊

遊

班路路路路班

磁

斑

斑

斑

遊

斑

斑

班

遊

斑

斑

斑

斑

遊

斑

遊

遊

遊

遊

뙖

磁

掛

瓷

路路

器

器器

路路路

檢

密

密

磁

密

密

遊

遊

密

寮

遊

遊

璨

MATERT

на изобретение

№ 2787733

Способ повышения продуктивности и качества мяса цыплят-бройлеров

Патентообладатель: Федеральное государственное бюджетное научное учреждение Федеральный научный центр "Всероссийский научно-исследовательский и технологический институт птицеводства" Российской академии наук (ФНЦ "ВНИТИП" РАН) (RU)

Авторы: Егоров Иван Афанасьевич (RU), Андрианова Елена Николаевна (RU), Демидова Екатерина Сергеевна (RU), Григорьева Елена Николаевна (RU)

Заявка № 2022106637

Приоритет изобретения 14 марта 2022 г. Дата государственной регистрации в Государственном реестре изобретений Российской Федерации 12 января 2023 г. Срок действия исключительного права на изобретение истекает 14 марта 2042 г.

> Руководитель Федеральной службы по интеллектуальной собственности

> > Ю.С. Зубов

9. 路路路路路路路路路路路路路路路路路路路路路路路路路路路路路路

Комиссия в составе: директор СГЦ «Загорское ЭПХ» Аншаков Д.В., ветеринарный врач СГЦ «Загорское ЭПХ» Тишенков Д.И., главный экономист СГЦ «Загорское ЭПХ» Белов А.А., руководитель научного направления питание с.-х. птицы, академик РАН Егоров И.А., доктор сельскохозяйственных наук, главный специалист ФНЦ «ВНИТИП» Андрианова Е.Н., м.н.с. отдела питания птицы ФНЦ «ВНИТИП», аспирант Демидова Е.С. составили настоящий акт о том, что в марте-апреле 2023 г. в СГЦ «Загорское ЭПХ» была проведена производственная проверка на цыплятах-бройлерах кросса «Росс-308» по теме: «Использование антиоксидантов в кормлении цыплят-бройлеров».

Было сформировано три группы цыплят-бройлеров суточного возраста (по 105 голов в каждой). Плотность посадки, световой и температурный режимы согласно «Методическим рекомендациям по технологическому проектированию птицеводческих предприятий», 2013 г. Продолжительность опыта – 35 суток. Кормление бройлеров сухими рассыпными комбикормами с питательностью согласно «Методическому пособию по кормлению сельскохозяйственной птицы», 2021 г. Цыплята базового варианта получали полнорационные комбикорма пшенично-кукурузного типа, питательность которых соответствовала рекомендациям ВНИТИП 2021 г. по периодам выращивания - в стартовом периоде, где возраст цыплят составлял 1-14 суток, сырой протеин и обменная энергия были 22,73% и 307Ккал/100г соответственно; в ростовом периоде выращивания цыплят-бройлеров с 15-21 сутки, сырой протеин и обменная энергия были 22,84% и 317 Ккал/100 г, а в финишный период выращивания с 22 суточного возраста до убоя сырой протеин и обменная энергия достигали 20,31% и 320Ккал/кг. Бройлерам первого нового варианта скармливали полнорационный комбикорм базового варианта с добавление куркумы в дозировке 500 г/т корма. Бройлеров второго нового варианта выращивали на рационах базового варианта с

дигидрокверцетина в дозировках 500 и 10 г/т соответственно. Схема производственной проверки приведена в таблице 1.

Таблица 1 - Схема производственной проверки.

Вариант	Особенности кормления
Базовый	Основной рацион (OP), питательность которого соответствовала рекомендациям ВНИТИП 2021 г.
Новый 1	Основной рацион (OP), питательность которого соответствовала рекомендациям ВНИТИП 2021 г. с добавлением куркумы в дозировке 500 г/т корма.
Новый 2	Основной рацион (OP), питательность которого соответствовала рекомендациям ВНИТИП 2021 г. с добавлением куркумы и дигидрокверцетина в дозировках 500 г/т и 10 г/т корма соответственно.

Результаты производственной проверки представлены в таблице 2.

Таблица 2 - Результаты производственной проверки..

,		Вариант	
Показатели	базовый	1-новый	2-новый
1	2	3	4
Принято на выращивание, гол.	105	105	105
Поголовье на конец выращивания, гол.	101	103	103
Сохранность, %	96,19	98,1	98,1
Срок выращивания, сут.	35	35	35
Средняя живая масса суточного цыпленка, г	40,0	39,6	39,9
Средняя живая масса 1 гол. на конец выращивания, г	2023,30	2136,65	2115,65
Среднесуточный прирост, г	58,33	61,68	61,05
Валовая живая масса, кг	204,353	220,075	217,912
Валовый прирост живой массы, кг	200,153	215,917	213,722
Расход корма всего, кг	328,260	349,350	344,808
Потребление корма на 1 гол в сутки, г	93,735	98,798	97,513
Потребление корма на 1 гол за период выращивания, кг	3,187	3,359	3,315
Затраты корма на 1 кг прироста живой массы, кг	1,607	1,602	1,597
Масса потрошеной тушки, кг	1,459	1,589	1,550
Убойный выход потрошеной тушки, %	72,11	74,36	73,26
Убойный выход потрошеной тушки, кг	147,36	163,67	159,65
Средняя стоимость 1кг комбикорма, руб.	30,67	30,87	30,99
Стоимость одного суточного цыпленка, руб.	60,0	60,0	60,0
Средняя цена реализации 1 кг мяса, руб.	150,0	150,0	150,0
Общие затраты (руб.), в.т.ч.:	21487,02	22770,57	22532,51
Стоимость суточных цыплят	6300,0	6300,0	6300,0
Стоимость кормов	10066,29	10783,81	10684,94
Прочие прямые затраты	5120,73	5686,76	5547,57

Выручка от реализации мяса птицы, руб.	22104,00	24547,5	23946,0
Прибыль, руб.	616,98	1776,93	1413,49
Рентабельность производства бройлеров, %	2,87	7,80	6,27
Себестоимость 1 кг мяса, руб.	145,81	139,14	141,15
Экономическая эффективность, руб.		1091,55	743,92
Экономическая эффективность в расчете на 1000 голов, руб.		10495,67	7153,08

Расчёт экономической эффективности проводили по формуле:

$$\ni = (C_{\mathsf{B}} - C_{\mathsf{H}}) \times A_{\mathsf{H}}$$
, где

Э – экономическая эффективность производства мяса, руб.;

 $C_{\rm b}, C_{\rm H}$ – себестоимость 1 кг мяса бройлеров (базовая и новая), руб.;

Ан – количество произведённой продукции в новом варианте, кг

$$\Theta_1 = (145,81 - 139,14) \times 163,65 = 1091,55 \text{ py}6.$$

$$\Im 2 = (145,81 - 141,15) \times 159,64 = 743,92 \text{ py6}.$$

Таким образом экономическая эффективность использования куркумы в дозировке 500г/т корма в новом варианте 1, с учетом производственных затрат на содержание бройлеров составила 1091,55 руб., а в новом варианте 2, где использовали куркуму и дигидрокверцетин в дозировках 500 и 10г/т корма соответственно-743,92 руб.

В пересчёте на 1000 голов цыплят-бройлеров, сданных на убой, экономический эффект от выращивания бройлеров на рационах с добавлением куркумы в дозировке 500г/т корма, в новом варианте 1, равен 10495,67 руб., а в новом варианте 2, где добавляли куркуму и дигидрокверцетин в дозировке 500 и 10 г/т комбикорма соответственно - 7153,08 руб. (в ценах 2023 года).

И пенн	комиссии:
ЧЛЕНЫ	комиссии.

от СГЦ «Загорское ЭПХ»

Директор

Ветеринарный врач

Главный экономист

от ФНЦ «ВНИТИП»

Руководитель научного направления питание с.-х. птицы, академик РАН

Д.с.-х. наук, главный специалист, научный руководитель

М.н.с. отдела питания птицы, аспирант

Д.В. Аншаков

Д.И. Тишенков

А.А. Белов

И.А. Егоров

Е.Н. Андрианова

Е.С. Демидова